Annelies Vandekerckhove
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annelies Vandekerckhove.
Journal of General Virology | 2010
Annelies Vandekerckhove; Sarah Glorieux; Annick Gryspeerdt; Lennert Steukers; Luc Duchateau; Nikolaus Osterrieder; G. R. Van de Walle; Hans Nauwynck
Equine herpesvirus type 1 (EHV-1) is the causative agent of equine herpes myeloencephalopathy, of which outbreaks are reported with increasing frequency throughout North America and Europe. This has resulted in its classification as a potentially emerging disease by the US Department of Agriculture. Recently, it was found that a single nucleotide polymorphism (SNP) in the viral DNA polymerase gene (ORF30) at aa 752 (N-->D) is associated with the neurovirulent potential of EHV-1. In the present study, equine respiratory mucosal explants were inoculated with several Belgian isolates typed in their ORF30 as D(752) or N(752), to evaluate a possible difference in replication in the upper respiratory tract. In addition, to evaluate whether any observed differences could be attributed to the SNP associated with neurovirulence, the experiments were repeated with parental Ab4 (reference neurovirulent strain), parental NY03 (reference non-neurovirulent strain) and their N/D revertant recombinant viruses. The salient findings were that EHV-1 spreads plaquewise in the epithelium, but plaques never cross the basement membrane (BM). However, single EHV-1-infected cells could be observed below the BM at 36 h post-inoculation (p.i.) for all N(752) isolates and at 24 h p.i. for all D(752) isolates, and were identified as monocytic cells and T lymphocytes. Interestingly, the number of infected cells was two to five times higher for D(752) isolates compared with N(752) isolates at every time point analysed. Finally, this study showed that equine respiratory explants are a valuable and reproducible model to study EHV-1 neurovirulence in vitro, thereby reducing the need for horses as experimental animals.
Veterinary Microbiology | 2010
Annick Gryspeerdt; Annelies Vandekerckhove; Barbara Garré; Filip Barbé; G. R. Van de Walle; Hans Nauwynck
Equine herpesvirus 1 (EHV1) replicates in the respiratory tract of horses, after which infected leukocytes transport virus throughout the body, resulting in abortion or nervous system disorders. Two EHV1 strains circulate in the field: neurovirulent and non-neurovirulent. To investigate differences in replication in the upper respiratory tract (URT), an experimental inoculation study in ponies was performed with both strains. Two groups of six ponies, were inoculated intranasally with 10(6.5) TCID(50) of either strain. Clinical signs, nasal shedding and viremia were evaluated. At early time points post-inoculation (pi), one pony of each group was euthanized. Tissues were collected for titration and immunostainings. Number and size of EHV1-induced plaques were calculated, and individual EHV1-infected cells were quantified and characterized. Inoculation with either strain resulted in nasal shedding and replication in several tissues of the URT. Both strains replicated in a plaquewise manner in epithelium of the nasal mucosa, but replication in epithelium of the nasopharynx was largely limited to non-neurovirulent EHV1. Plaques were never able to cross the basement membrane, but individual infected cells were noticed in the connective tissue of all examined tissues for both strains. The total number of these cells however, was 3-7 times lower with non-neurovirulent EHV1 compared to neurovirulent EHV1. CD172a(+) cells and CD5(+) lymphocytes were important target cells for both strains. Interestingly, in lymph nodes, B-lymphocytes were also important target cells for EHV1, irrespective of the strain. Viremia was detected very early pi and infected cells were mainly CD172a(+) for both strains. In summary, these results are valuable for understanding EHV1 pathogenesis at the port of entry, the URT.
PLOS ONE | 2011
Sarah Glorieux; Claus Bachert; Herman Favoreel; Annelies Vandekerckhove; Lennert Steukers; Anamaria Rekecki; Wim Van Den Broeck; Joline Goossens; Siska Croubels; Reginald Clayton; Hans Nauwynck
Background Herpes simplex virus infections are highly prevalent in humans. However, the current therapeutics suffer important drawbacks such as limited results in neonates, increasing occurrence of resistance and impeded treatment of stromal infections. Remarkably, interactions of herpesviruses with human mucosa, the locus of infection, remain poorly understood and the underlying mechanisms in stromal infection remain controversial. Methodology/Principal Findings A human model consisting of nasal respiratory mucosa explants was characterised. Viability and integrity were examined during 96 h of cultivation. HSV1-mucosa interactions were analysed. In particular, we investigated whether HSV1 is able to reach the stroma. Explant viability and integrity remained preserved. HSV1 induced rounding up and loosening of epithelial cells with very few apoptotic and necrotic cells observed. Following 16–24 h of infection, HSV1 penetrated the basement membrane and replicated in the underlying lamina propria. Conclusions/Significance This human explant model can be used to study virus-mucosa interactions and viral mucosal invasion mechanisms. Using this model, our results provide a novel insight into the HSV1 stromal invasion mechanism and for the first time directly demonstrate that HSV1 can penetrate the basement membrane.
Veterinary Microbiology | 2012
Sabrina Vairo; Annelies Vandekerckhove; Lennert Steukers; Sarah Glorieux; Wim Van Den Broeck; Hans Nauwynck
Equine viral arteritis (EVA) is an infectious disease with variable clinical outcome. Outbreaks, causing important economic losses, are becoming more frequent. Currently, there is a shortage of pathogenesis studies performed with European strains. In the present study, eight seronegative ponies were experimentally inoculated with the Belgian strain of equine arteritis virus (EAV) 08P178 (EU-1 clade) and monitored daily for clinical signs of EVA. Nasopharyngeal swabs, ocular swabs, bronchoalveolar cells and blood were collected for virological and serological testing. Two ponies were euthanized at 3, 7, 14, and 28 days post infection (DPI). After necropsy, specimens were collected for virus titration and immunofluorescence. EVA symptoms such as fever and lymphadenomegaly were evident from 3 to 10 DPI. Virus was isolated in nasal secretions from 2 to 9 DPI and in bronchoalveolar cells from 3 to 7 DPI. A cell-associated viraemia was detected from 3 to 10 DPI. After replication in the respiratory tract and draining lymph nodes, EAV reached secondary target organs (high virus titers in internal organs sampled at 7 DPI). At 14 DPI, virus titers dropped drastically and, at 28 DPI, only tonsils were positive. Immunofluorescence revealed both individual and clustered EAV-infected cells. Antibodies were detected starting from 7 DPI. It can be concluded that the Belgian strain 08P178 is a European mildly virulent subtype. At present, most European EAV strain infections were thought to run a subclinical course. This study is a proof that mildly virulent European EAV strains do exist in the field.
Trends in Microbiology | 2012
Lennert Steukers; Sarah Glorieux; Annelies Vandekerckhove; Herman Favoreel; Hans Nauwynck
During primary contact with susceptible hosts, microorganisms face an array of barriers that thwart their invasion process. Passage through the basement membrane (BM), a 50–100-nm-thick crucial barrier underlying epithelia and endothelia, is a prerequisite for successful host invasion. Such passage allows pathogens to reach nerve endings or blood vessels in the stroma and to facilitate spread to internal organs. During evolution, several pathogens have developed different mechanisms to cross this dense matrix of sheet-like proteins. To breach the BM, some microorganisms have developed independent mechanisms, others hijack host cells that are able to transverse the BM (e.g. leukocytes and dendritic cells) and oncogenic microorganisms might even trigger metastatic processes in epithelial cells to penetrate the underlying BM.
Veterinary Research | 2011
Lennert Steukers; Annelies Vandekerckhove; Wim Van Den Broeck; Sarah Glorieux; Hans Nauwynck
In general, members of the Alphaherpesvirinae use the epithelium of the upper respiratory and/or genital tract as a preferential site for primary replication. Bovine herpesvirus type 1 (BoHV-1) may replicate at both sites and cause two major clinical entities designated as infectious bovine rhinotracheitis (IBR) and infectious pustular vulvovaginitis/balanoposthitis (IPV/IPB) in cattle. It has been hypothesized that subtype 1.1 invades preferentially the upper respiratory mucosa whereas subtype 1.2 favors replication at the peripheral genital tract. However, some studies are in contrast with this hypothesis. A thorough study of primary replication at both mucosae could elucidate whether or not different BoHV-1 subtypes show differences in mucosa tropism. We established bovine respiratory and genital organ cultures with emphasis on maintenance of tissue morphology and viability during in vitro culture. In a next step, bovine respiratory and genital mucosa explants of the same animals were inoculated with several BoHV-1 subtypes. A quantitative analysis of viral invasion in the mucosa was performed at 0 h, 24 h, 48 h and 72 h post inoculation (pi) by measuring plaque latitude and penetration depth underneath the basement membrane. All BoHV-1 subtypes exhibited a more profound invasion capacity in respiratory tissue compared to that in genital tissue at 24 h pi. However, at 24 h pi plaque latitude was found to be larger in genital tissue compared to respiratory tissue and this for all subtypes. These similar findings among the different subtypes take the edge off the belief of the existence of specific mucosa tropisms of different BoHV-1 subtypes.
Veterinary Microbiology | 2011
Annelies Vandekerckhove; Sarah Glorieux; Annick Gryspeerdt; Lennert Steukers; J Van Doorsselaere; Nikolaus Osterrieder; G. R. Van de Walle; Hans Nauwynck
Equine herpesvirus type 1 (EHV-1) replicates extensively in the epithelium of the upper respiratory tract, after which it can spread throughout the body via a cell-associated viremia in mononuclear leukocytes reaching the pregnant uterus and central nervous system. In a previous study, we were able to mimic the in vivo situation in an in vitro respiratory mucosal explant system. A plaquewise spread of EHV-1 was observed in the epithelial cells, whereas in the connective tissue below the basement membrane (BM), EHV-1-infected mononuclear leukocytes were noticed. Equine herpesvirus type 4 (EHV-4), a close relative of EHV-1, can also cause mild respiratory disease, but a cell-associated viremia in leukocytes is scarce and secondary symptoms are rarely observed. Based on this striking difference in pathogenicity, we aimed to evaluate how EHV-4 behaves in equine mucosal explants. Upon inoculation of equine mucosal explants with the EHV-4 strains VLS 829, EQ(1) 012 and V01-3-13, replication of EHV-4 in epithelial cells was evidenced by the presence of viral plaques in the epithelium. Interestingly, EHV-4-infected mononuclear leukocytes in the connective tissue below the BM were extremely rare and were only present for one of the three strains. The inefficient capacity of EHV-4 to infect mononuclear cells explains in part the rarity of EHV-4-induced viremia, and subsequently, the rarity of EHV-4-induced abortion or EHM.
Veterinary Journal | 2009
Annelies Vandekerckhove; Sarah Glorieux; Wim Van Den Broeck; Annick Gryspeerdt; Karen van der Meulen; Hans Nauwynck
An in vitro model of the upper respiratory tract of the horse was developed to investigate mechanisms of respiratory diseases. Four tissues of the upper respiratory tract of three horses were collected. Explants were maintained in culture at an air-liquid interface for 96h. At 0, 24, 48, 72 and 96h of cultivation, a morphometric analysis was performed using light microscopy, scanning electron microscopy and transmission electron microscopy. The explants were judged on morphometric changes of epithelium, basement membrane and connective tissue. Viability was evaluated using a fluorescent Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labelling (TUNEL) staining. No significant changes in morphometry and viability of any of the explants were observed during cultivation. Hence, the in vitro model may be useful to study infectious and non-infectious diseases at the level of the equine respiratory tract, with potential application to the development of vaccines and treatments for diseases of the respiratory tract.
Veterinary Research | 2011
Sarah Glorieux; Herman Favoreel; Lennert Steukers; Annelies Vandekerckhove; Hans Nauwynck
Several alphaherpesviruses breach the basement membrane during mucosal invasion. In the present study, the role of proteases in this process was examined. The serine protease-specific inhibitor AEBSF inhibited penetration of the basement membrane by the porcine alphaherpesvirus pseudorabies virus (PRV) by 88.1% without affecting lateral spread. Inhibitors of aspartic-, cysteine-, and metalloproteases did not inhibit viral penetration of the basement membrane. Further analysis using the Soybean Type I-S trypsin inhibitor for the serine protease subcategory of trypsin-like serine proteases resulted in a 96.9% reduction in plaque depth underneath the basement membrane. These data reveal a role of a trypsin-like serine protease in PRV penetration of the basement membrane.
Ilar Journal | 2012
Lennert Steukers; Annelies Vandekerckhove; Wim Van Den Broeck; Sarah Glorieux; Hans Nauwynck
Bovine herpesvirus 1 (BoHV-1) is a well-known disease-causing agent in cattle. There is little known detailed information on viral behavior with emphasis on host invasion at primary replication sites such as the mucosa of the upper respiratory tract. Therefore, an in vitro system of bovine upper respiratory tract (bURT) mucosa explants was set up to study BoHV-1 molecular/cellular host-pathogen interactions. We performed a thorough morphometrical analysis (epithelial integrity, basement membrane continuity, and lamina propria integrity) using light microscopy and transmission electron microscopy. We applied a terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining as a viability test. Bovine upper respiratory tract mucosa explants were maintained in culture for up to 96 hours without any significant changes in morphometry and viability. Next, bURT mucosa explants were infected with BoHV-1 (Cooper) and collected at 0, 24, 48, and 72 hours postinoculation (p.i.). Using a quantitative analysis system to measure plaque latitude and invasion depth, we assessed dissemination characteristics in relation to elapsed time p.i. and found a plaquewise spread of BoHV-1 across the basement membrane as early as 24h p.i., similar to pseudorabies virus (PRV). Moreover, we observed that BoHV-1 exhibited an increased capacity to invade in proximal tracheal tissues compared to tissues of the deeper part of the nasal septum and ventral conchae. Revealing a more distinct invasion of BoHV-1 in proximal trachea, we can conclude that, in order to study an important aspect of BoHV-1 pathogenesis, the bovine upper respiratory tract mucosa explant model is the best suited model.