Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annelies W. Mesman is active.

Publication


Featured researches published by Annelies W. Mesman.


PLOS Pathogens | 2011

Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates

Ken Lemon; Rory D. de Vries; Annelies W. Mesman; Stephen McQuaid; Geert van Amerongen; Selma Yüksel; Martin Ludlow; Linda J. Rennick; Thijs Kuiken; Bertus K. Rima; Teunis B. H. Geijtenbeek; Albert D. M. E. Osterhaus; W. Paul Duprex; Rik L. de Swart

Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMVKSEGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n = 3 per time point) and infected (EGFP+) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP+ cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.


Current Opinion in Virology | 2012

The pathogenesis of measles.

Rory D. de Vries; Annelies W. Mesman; Teunis B. H. Geijtenbeek; W. Paul Duprex; Rik L. de Swart

Measles is an important cause of childhood morbidity and mortality in developing countries. Measles virus (MV) is transmitted via the respiratory route and causes systemic disease. Over the last decade, identification of new cellular receptors and studies in animal models have challenged the historic concepts of measles pathogenesis. It is thought that MV enters the host by infection of alveolar macrophages and/or dendritic cells in the airways, and is amplified in local lymphoid tissues. Viremia mediated by infected CD150+ lymphocytes results in systemic dissemination. Infection of lymphocytes and dendritic cells in the respiratory submucosa facilitates basolateral infection of epithelial cells via the newly identified receptor Nectin-4. Concomitant and extensive epithelial damage may contribute to efficient transmission to the next host.


Cell Host & Microbe | 2014

Antagonism of the Phosphatase PP1 by the Measles Virus V Protein Is Required for Innate Immune Escape of MDA5

Meredith E. Davis; May K. Wang; Linda J. Rennick; Florian Full; Sebastian Gableske; Annelies W. Mesman; Sonja I. Gringhuis; Teunis B. H. Geijtenbeek; W. Paul Duprex; Michaela U. Gack

The cytosolic sensor MDA5 is crucial for antiviral innate immune defense against various RNA viruses including measles virus; as such, many viruses have evolved strategies to antagonize the antiviral activity of MDA5. Here, we show that measles virus escapes MDA5 detection by targeting the phosphatases PP1α and PP1γ, which regulate MDA5 activity by removing an inhibitory phosphorylation mark. The V proteins of measles virus and the related paramyxovirus Nipah virus interact with PP1α/γ, preventing PP1-mediated dephosphorylation of MDA5 and thereby its activation. The PP1 interaction with the measles V protein is mediated by a conserved PP1-binding motif in the C-terminal region of the V protein. A recombinant measles virus expressing a mutant V protein deficient in PP1 binding is unable to antagonize MDA5 and is growth impaired due to its inability to suppress interferon induction. This identifies PP1 antagonism as a mechanism employed by paramyxoviruses for evading innate immune recognition.


Nature Communications | 2014

Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation

Sonja I. Gringhuis; Tanja M. Kaptein; Brigitte A. Wevers; Annelies W. Mesman; Teunis B. H. Geijtenbeek

Carbohydrate-specific signalling through DC-SIGN provides dendritic cells with plasticity to tailor immunity to the nature of invading microbes. Here we demonstrate that recognition of fucose-expressing extracellular pathogens like Schistosoma mansoni and Helicobacter pylori by DC-SIGN favors T helper cell type-2 (TH2) responses via activation of atypical NF-κB family member Bcl3. Crosstalk between TLR and DC-SIGN signalling results in TLR-induced MK2-mediated phosphorylation of LSP1, associated with DC-SIGN, upon fucose binding. Subsequently, IKKε and CYLD are recruited to phosphorylated LSP1. IKKε activation is pivotal for suppression of CYLD deubiquitinase activity and subsequent nuclear translocation of ubiquitinated Bcl3. Bcl3 activation represses TLR-induced proinflammatory cytokine expression, while enhancing interleukin-10 (IL-10) and TH2-attracting chemokine expression, shifting TH differentiation from TH1 to TH2 polarization. Thus, DC-SIGN directs adaptive TH2 immunity to fucose-expressing pathogens via an IKKε-CYLD-dependent signalling pathway leading to Bcl3 activation, which might be targeted in vaccination strategies or to prevent aberrant inflammation and allergy.


Cell Host & Microbe | 2014

Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases

Annelies W. Mesman; Esther M. Zijlstra-Willems; Tanja M. Kaptein; Rik L. de Swart; Meredith E. Davis; Martin Ludlow; W. Paul Duprex; Michaela U. Gack; Sonja I. Gringhuis; Teunis B. H. Geijtenbeek

Dendritic cells (DCs) are targets of measles virus (MV) and play central roles in viral dissemination. However, DCs express the RIG-I-like receptors (RLRs) RIG-I and Mda5 that sense MV and induce type I interferon (IFN) production. Given the potency of this antiviral response, RLRs are tightly regulated at various steps, including dephosphorylation by PP1 phosphatases, which induces their activation. We demonstrate that MV suppresses RIG-I and Mda5 by activating the C-type lectin DC-SIGN and inducing signaling that prevents RLR dephosphorylation. MV binding to DC-SIGN leads to activation of the kinase Raf-1, which induces the association of PP1 inhibitor I-1 with GADD34-PP1 holoenzymes, thereby inhibiting phosphatase activity. Consequently, GADD34-PP1 holoenzymes are unable to dephosphorylate RIG-I and Mda5, hence suppressing type I IFN responses and enhancing MV replication. Blocking DC-SIGN signaling allows RLR activation and suppresses MV infection of DCs. Thus, MV subverts DC-SIGN to control RLR activation and escape antiviral responses.


PLOS ONE | 2012

A prominent role for DC-SIGN+ dendritic cells in initiation and dissemination of measles virus infection in non-human primates.

Annelies W. Mesman; Rory D. de Vries; Stephen McQuaid; W. Paul Duprex; Rik L. de Swart; Teunis B. H. Geijtenbeek

Measles virus (MV) is a highly contagious virus that is transmitted by aerosols. During systemic infection, CD150+ T and B lymphocytes in blood and lymphoid tissues are the main cells infected by pathogenic MV. However, it is unclear which cell types are the primary targets for MV in the lungs and how the virus reaches the lymphoid tissues. In vitro studies have shown that dendritic cell (DC) C-type lectin DC-SIGN captures MV, leading to infection of DCs as well as transmission to lymphocytes. However, evidence of DC-SIGN-mediated transmission in vivo has not been established. Here we identified DC-SIGNhi DCs as first target cells in vivo and demonstrate that macaque DC-SIGN functions as an attachment receptor for MV. Notably, DC-SIGNhi cells from macaque broncho-alveolar lavage and lymph nodes transmit MV to B lymphocytes, providing in vivo support for an important role for DCs in both initiation and dissemination of MV infection.


Retrovirology | 2014

Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission

Ramin Sarrami-Forooshani; Annelies W. Mesman; Nienke H. van Teijlingen; Joris K. Sprokholt; Michiel van der Vlist; Carla M. S. Ribeiro; Teunis B. H. Geijtenbeek

BackgroundSexual transmission is the main route of HIV-1 infection and the CCR5-using (R5) HIV-1 is predominantly transmitted, even though CXCR4-using (X4) HIV-1 is often abundant in chronic HIV-1 patients. The mechanisms underlying this tropism selection are unclear. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 and here we investigated the role of LCs in selection of R5 HIV-1 using an ex vivo epidermal and vaginal transmission models.ResultsImmature LCs were productively infected by X4 as well as R5 HIV-1. However, only R5 but not X4 viruses were selectively transmitted by immature LCs to T cells. Transmission of HIV-1 was depended on de novo production of HIV-1 in LCs, since it could be inhibited by CCR5 fusion inhibitors as well as reverse transcription inhibitors. Notably, the activation state of LCs affected the restriction in X4 HIV-1 transmission; immune activation by TNF facilitated transmission of X4 as well as R5 HIV-1.ConclusionsThese data suggest that LCs play a crucial role in R5 selection and that immature LCs effectively restrict X4 at the level of transmission.


PLOS Neglected Tropical Diseases | 2016

Minimally Symptomatic Infection in an Ebola ‘Hotspot’: A Cross-Sectional Serosurvey

Eugene T. Richardson; J. Daniel Kelly; Mohamed Bailor Barrie; Annelies W. Mesman; Sahr Karku; Komba Quiwa; Regan H. Marsh; Songor Koedoyoma; Fodei Daboh; K.P. Barron; Michael Grady; Elizabeth Tucker; Kerry Dierberg; George W. Rutherford; Michele Barry; James Holland Jones; Megan Murray; Paul Farmer

Introduction Evidence for minimally symptomatic Ebola virus (EBOV) infection is limited. During the 2013–16 outbreak in West Africa, it was not considered epidemiologically relevant to published models or projections of intervention effects. In order to improve our understanding of the transmission dynamics of EBOV in humans, we investigated the occurrence of minimally symptomatic EBOV infection in quarantined contacts of reported Ebola virus disease cases in a recognized ‘hotspot.’ Methodology/Principal Findings We conducted a cross-sectional serosurvey in Sukudu, Kono District, Sierra Leone, from October 2015 to January 2016. A blood sample was collected from 187 study participants, 132 negative controls (individuals with a low likelihood of previous exposure to Ebola virus), and 30 positive controls (Ebola virus disease survivors). IgG responses to Ebola glycoprotein and nucleoprotein were measured using Alpha Diagnostic International ELISA kits with plasma diluted at 1:200. Optical density was read at 450 nm (subtracting OD at 630nm to normalize well background) on a ChroMate 4300 microplate reader. A cutoff of 4.7 U/mL for the anti-GP ELISA yielded 96.7% sensitivity and 97.7% specificity in distinguishing positive and negative controls. We identified 14 seropositive individuals not known to have had Ebola virus disease. Two of the 14 seropositive individuals reported only fever during quarantine while the remaining 12 denied any signs or symptoms during quarantine. Conclusions/Significance By using ELISA to measure Zaire Ebola virus antibody concentrations, we identified a significant number of individuals with previously undetected EBOV infection in a ‘hotspot’ village in Sierra Leone, approximately one year after the village outbreak. The findings provide further evidence that Ebola, like many other viral infections, presents with a spectrum of clinical manifestations, including minimally symptomatic infection. These data also suggest that a significant portion of Ebola transmission events may have gone undetected during the outbreak. Further studies are needed to understand the potential risk of transmission and clinical sequelae in individuals with previously undetected EBOV infection.


Frontiers in Immunology | 2012

Pattern Recognition Receptors in HIV Transmission

Annelies W. Mesman; Teunis B. H. Geijtenbeek

Dendritic cells (DCs), Langerhans cells (LCs), and macrophages are innate immune cells that reside in genital and intestinal mucosal tissues susceptible to HIV-1 infection. These innate cells play distinct roles in initiation of HIV-1 infection and induction of anti-viral immunity. DCs are potent migratory cells that capture HIV-1 and transfer virus to CD4+ T cells in the lymph nodes, whereas LCs have a protective anti-viral function, and macrophages function as viral reservoirs since they produce viruses over prolonged times. These differences are due to the different immune functions of these cells partly dependent on the expression of specific pattern recognition receptors. Expression of Toll-like receptors, C-type lectin receptors, and cell-specific machinery for antigen uptake and processing strongly influence the outcome of virus interactions.


Journal of General Virology | 2016

Influenza virus A(H1N1)2009 antibody-dependent cellular cytotoxicity in young children prior to the H1N1 pandemic

Annelies W. Mesman; Brenda M. Westerhuis; Hinke I. ten Hulscher; Ronald Jacobi; Erwin de Bruin; Josine van Beek; Annemarie M. Buisman; Marion Koopmans; Robert S. van Binnendijk

Pre-existing immunity played a significant role in protection during the latest influenza A virus H1N1 pandemic, especially in older age groups. Structural similarities were found between A(H1N1)2009 and older H1N1 virus strains to which humans had already been exposed. Broadly cross-reactive antibodies capable of neutralizing the A(H1N1)2009 virus have been implicated in this immune protection in adults. We investigated the serological profile of a group of young children aged 9 years (n=55), from whom paired blood samples were available, just prior to the pandemic wave (March 2009) and shortly thereafter (March 2010). On the basis of A(H1N1)2009 seroconversion, 27 of the 55 children (49 %) were confirmed to be infected between these two time points. Within the non-infected group of 28 children (51 %), high levels of seasonal antibodies to H1 and H3 HA1 antigens were detected prior to pandemic exposure, reflecting past infection with H1N1 and H3N2, both of which had circulated in The Netherlands prior to the pandemic. In some children, this reactivity coincided with specific antibody reactivity against A(H1N1)2009. While these antibodies were not able to neutralize the A(H1N1)2009 virus, they were able to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro upon interaction with the A(H1N1)2009 virus. This finding suggests that cross-reactive antibodies could contribute to immune protection in children via ADCC.

Collaboration


Dive into the Annelies W. Mesman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rik L. de Swart

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Rory D. de Vries

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen McQuaid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene T. Richardson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge