Annelinde R. E. Vandenbroucke
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annelinde R. E. Vandenbroucke.
Frontiers in Psychology | 2010
Ilja G. Sligte; Annelinde R. E. Vandenbroucke; H. Steven Scholte; Victor A. F. Lamme
Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages – iconic memory, fragile VSTM, and visual working memory – with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the “pre-change” object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the “pre-change” object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory.
Visual Cognition | 2009
Robert H. Logie; James R. Brockmole; Annelinde R. E. Vandenbroucke
We explored whether individual features and bindings between those features in VSTM tasks are completely lost from trial to trial or whether residual memory traces for these features and bindings are retained in long-term memory. Memory for arrays of coloured shapes was assessed using change detection or cued recall. Across trials, either the same colour-shape (integrated object) combinations were repeated or one feature was repeated while the other varied. Observers became sensitive to the repetition of bindings, but only if it occurred on every trial. Repetition of single features only led to learning in the cued-recall task, and was weak compared to whole-object repetitions. Results suggest that representations in visual short-term memory comprise integrated objects rather than individual features. These representations are readily displaced by new representations formed on subsequent trials. However, when a given representation is not displaced, longer term residual traces can be generated to support long-term learning, and any learning that does occur is based on integrated objects, not individual features.
Psychological Science | 2013
Martijn E. Wokke; Annelinde R. E. Vandenbroucke; H. Steven Scholte; Victor A. F. Lamme
A striking example of the constructive nature of visual perception is how the human visual system completes contours of occluded objects. To date, it is unclear whether perceptual completion emerges during early stages of visual processing or whether higher-level mechanisms are necessary. To answer this question, we used transcranial magnetic stimulation to disrupt signaling in V1/V2 and in the lateral occipital (LO) area at different moments in time while participants performed a discrimination task involving a Kanizsa-type illusory figure. Results show that both V1/V2 and higher-level visual area LO are critically involved in perceptual completion. However, these areas seem to be involved in an inverse hierarchical fashion, in which the critical time window for V1/V2 follows that for LO. These results are in line with the growing evidence that feedback to V1/V2 contributes to perceptual completion.
Neuropsychologia | 2011
Annelinde R. E. Vandenbroucke; Ilja G. Sligte; Victor A. F. Lamme
People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory.
Journal of Cognitive Neuroscience | 2014
Annelinde R. E. Vandenbroucke; Johannes J. Fahrenfort; Ilja G. Sligte; Victor A. F. Lamme
Every day, we experience a rich and complex visual world. Our brain constantly translates meaningless fragmented input into coherent objects and scenes. However, our attentional capabilities are limited, and we can only report the few items that we happen to attend to. So what happens to items that are not cognitively accessed? Do these remain fragmentary and meaningless? Or are they processed up to a level where perceptual inferences take place about image composition? To investigate this, we recorded brain activity using fMRI while participants viewed images containing a Kanizsa figure, an illusion in which an object is perceived by means of perceptual inference. Participants were presented with the Kanizsa figure and three matched nonillusory control figures while they were engaged in an attentionally demanding distractor task. After the task, one group of participants was unable to identify the Kanizsa figure in a forced-choice decision task; hence, they were “inattentionally blind.” A second group had no trouble identifying the Kanizsa figure. Interestingly, the neural signature that was unique to the processing of the Kanizsa figure was present in both groups. Moreover, within-subject multivoxel pattern analysis showed that the neural signature of unreported Kanizsa figures could be used to classify reported Kanizsa figures and that this cross-report classification worked better for the Kanizsa condition than for the control conditions. Together, these results suggest that stimuli that are not cognitively accessed are processed up to levels of perceptual interpretation.
Psychological Science | 2014
Annelinde R. E. Vandenbroucke; Ilja G. Sligte; Anil K. Seth; Johannes J. Fahrenfort; Victor A. F. Lamme
The capacity to attend to multiple objects in the visual field is limited. However, introspectively, people feel that they see the whole visual world at once. Some scholars suggest that this introspective feeling is based on short-lived sensory memory representations, whereas others argue that the feeling of seeing more than can be attended to is illusory. Here, we investigated this phenomenon by combining objective memory performance with subjective confidence ratings during a change-detection task. This allowed us to compute a measure of metacognition—the degree of knowledge that subjects have about the correctness of their decisions—for different stages of memory. We show that subjects store more objects in sensory memory than they can attend to but, at the same time, have similar metacognition for sensory memory and working memory representations. This suggests that these subjective impressions are not an illusion but accurate reflections of the richness of visual perception.
PLOS ONE | 2012
Annelinde R. E. Vandenbroucke; Ilja G. Sligte; Johannes J. Fahrenfort; Klaudia B. Ambroziak; Victor A. F. Lamme
Introspectively we experience a phenomenally rich world. In stark contrast, many studies show that we can only report on the few items that we happen to attend to. So what happens to the unattended objects? Are these consciously processed as our first person perspective would have us believe, or are they – in fact – entirely unconscious? Here, we attempt to resolve this question by investigating the perceptual characteristics of visual sensory memory. Sensory memory is a fleeting, high-capacity form of memory that precedes attentional selection and working memory. We found that memory capacity benefits from figural information induced by the Kanizsa illusion. Importantly, this benefit was larger for sensory memory than for working memory and depended critically on the illusion, not on the stimulus configuration. This shows that pre-attentive sensory memory contains representations that have a genuinely perceptual nature, suggesting that non-attended representations are phenomenally experienced rather than unconscious.
Cerebral Cortex | 2016
Annelinde R. E. Vandenbroucke; Johannes J. Fahrenfort; Julia D. I. Meuwese; H.S. Scholte; Victor A. F. Lamme
To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision.
Journal of Cognitive Neuroscience | 2015
Annelinde R. E. Vandenbroucke; Ilja G. Sligte; Jade de Vries; Michael X Cohen; Victor A. F. Lamme
Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559–1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time–frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time–frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta–gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on visual processing mechanisms compared with WM. This study thus provides novel evidence for a dissociation between different stages in VSTM.
The Journal of Neuroscience | 2013
Ilja G. Sligte; D. van Moorselaar; Annelinde R. E. Vandenbroucke
The ability to keep visual information in mind after stimulus disappearance, often referred to as visual short-term memory or visual working memory (VWM), is crucial for guiding behavior. In early neuroimaging studies aimed at finding the neural correlates of VWM, it was assumed that brain areas