Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annemarie Scherbarth is active.

Publication


Featured researches published by Annemarie Scherbarth.


PLOS ONE | 2015

Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

Martin K. Schwarz; Annemarie Scherbarth; Rolf Sprengel; Johann Engelhardt; Patrick Theer; Guenter Giese

In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.


FEBS Letters | 1985

Tenacious binding of lipids to vimentin during its isolation and purification from Ehrlich ascites tumor cells

Peter Traub; Georgios Perides; Annemarie Scherbarth; Ulrike Traub

Vimentin enriched in cytoskeletal frameworks by Triton X‐100 extraction of Ehrlich ascites tumor cells and purified from a low ionic strength extract of the cell residues by (NH4)2SO4 precipitation and DEAE‐Sepharose and ssDNA‐cellulose chromatography in the presence of 6 M urea was highly contaminated with lipids. Thin‐layer chromatography of a chloroform‐methanol extract of the purified protein revealed, besides small amounts of phospholipids, the presence of large quantities of neutral lipids.


Journal of Molecular Biology | 1992

Characterization of the nucleic acid−binding activities of the isolated amino−terminal head domain of the intermediate filament protein vimentin reveals its close relationship to the DNA−binding regions of some prokaryotic single−stranded DNA−binding proteins

Peter Traub; Elfriede Mothes; Robert L. Shoeman; Siegfried Kühn; Annemarie Scherbarth

In order to demonstrate that the nucleic acid-binding activities of vimentin are dictated by its Arg-rich N-terminal head domain, this was cut off at position Lys96 with lysine-specific endoproteinase and analysed for its capacity to associate with a variety of synthetic and naturally occurring nucleic acids. The isolated polypeptide (vim NT) showed a preference for single-stranded (ss) polynucleotides, particularly for ssDNAs of high G-content. A comparison of the sequence and predicted secondary structure of vim NT with that of two prokaryotic ssDNA-binding proteins, G5P and G32P of bacteriophages fd and T4, respectively, revealed that the nucleic acid-binding region of all three polypeptides is almost entirely in the beta-conformation and characterized by a very similar distribution of aromatic amino acid residues. A partial sequence of vim NT can be folded into the same beta-loop structure as the DNA-binding wing of G5P of bacteriophage fd and related viruses. As in the case of G5P, nitration of the Tyr residues with tetranitromethane was blocked by single-stranded nucleic acids. This and spectroscopic data indicate intercalation of the Tyr aromatic ring systems between the bases of the nucleic acids and thus the contribution of a stacking component to the binding reaction. The binding was accompanied by significant changes in the ultraviolet absorption spectra of both vim NT and single-stranded nucleic acids. Upon mixing of vim NT with nucleic acids, massive precipitation of the reactants occurred, followed by the quick rearrangement of the aggregates with the formation of specific and soluble association products. Even at very high ionic strengths, at which no electrostatic reaction should be expected, a distinct fraction of vim NT incorporated naturally occurring ssRNAs and ssDNAs into fast sedimenting complexes, suggesting co-operative interaction of the polypeptide with the nucleic acids. In electron microscopy, the complexes obtained from 28 S rRNA appeared as networks of extended nucleic acid strands densely covered with vim NT, in contrast to the compact random coils of uncomplexed RNA. The networks produced from fd DNA were heterogeneous in appearance and their nucleoprotein strands in rare cases were very similar to the rod-like structures of G5P-fd DNA complexes.


Zeitschrift für Naturforschung C | 1987

Interaction in vitro of non-epithelial intermediate filament proteins with histones.

Peter Traub; Georg Perides; Siegfried Kühn; Annemarie Scherbarth

Abstract Non-epithelial intermediate filament (IF) subunit proteins show a high and specific affinity for core histones at physiological ionic strength. When IF proteins are titrated with a mixture of core histones and linker histone H1, in general the latter is totally excluded from com plexation and in the adducts formed the moderately-arginine-rich histones H2A and H2B are progressively replaced by the very-arginine-rich histones H3 and H4. At histone saturation, 2 molecules of nonneuronal IF protein bind 1 histone HI molecule or 8 core histone m olecules, whereas due to its glutamic acid rich, C terminal extensions one dimer of thp 68 kD npnrofilament nrotein associates with 3 molecules of histone H1 or 24 molecules of core histones. The salt stability of the insoluble association products is dependent on the amount and arginine content of the constituent histone species. Rem oval of the non-α-helical N- and C-terminal polypeptides from IF proteins by partial chymotryptic digestion does not affect their histone-binding characteristics. Since core histones are only partially inactivated by limited tryptic digestion, they also appear to react through their a-helix-rich central domains; the limit peptide derived from histone H1 is com pletely inactive at physiological ionic strength. Affinity chromatography of rod domains of IF proteins on core histone-Sepharose 4B and of histones and their limit peptides on vim entin-Sepharose 4B has shown that the interactions involving fractions of histones H3 and H4 are extrem ely resistant to salt and can be dissociated only with arginine or salt under denaturing conditions. In general, the experim ental results revealed close parallels between the association of histones with IF proteins and their interaction with DNA.


Journal of Biomolecular Structure & Dynamics | 1992

Binding of nucleic acids to intermediate filaments of the vimentin type and their effects on filament formation and stability

Peter Traub; Elfriede Mothes; Robert L. Shoeman; Rasmus R. Schröder; Annemarie Scherbarth

Guanine-rich polynucleotides such as poly(dG), oligo(dG)12-18 or poly(rG) were shown to exert a strong inhibitory effect on vimentin filament assembly and also to cause disintegration of preformed filaments in vitro. Gold-labeled oligo(dG)25 was preferentially localized at the physical ends of the aggregation and disaggregation products and at sites along filaments with a basic periodicity of 22.7 nm. Similar effects were observed with heat-denatured eukaryotic nuclear DNA or total rRNA, although these nucleic acids could affect filament formation and structure only at ionic strengths lower than physiological. However, whenever filaments were formed or stayed intact, they appeared associated with the nucleic acids. These electron microscopic observations were corroborated by sucrose gradient analysis of complexes obtained from preformed vimentin filaments and radioactively labeled heteroduplexes. Among the duplexes of the DNA type, particularly poly(dG).poly(dC), and, of those of the RNA type, preferentially poly(rA).poly(rU), were carried by the filaments with high efficiency into the pellet fraction. Single-stranded 18S and 28S rRNA interacted only weakly with vimentin filaments. Nevertheless, in a mechanically undisturbed environment, vimentin filaments could be densely decorated with intact 40S and 60S ribosomal subunits as revealed by electron microscopy. These results indicate that, in contrast to single-stranded nucleic acids with their compact random coil configuration, double-stranded nucleic acids with their elongated and flexible shape have the capability to stably interact with the helically arranged, surface-exposed amino-terminal polypeptide chains of vimentin filaments. Such interactions might be of physiological relevance in regard to the transport and positioning of nucleic acids and nucleoprotein particles in the various compartments of eukaryotic cells. Conversely, nucleic acids might be capable of affecting the cytoplasmic organization of vimentin filament networks through their filament-destabilizing potentials.


Preparative Biochemistry & Biotechnology | 1988

Large Scale Co-Isolation of Vimentin and Nuclear Lamins from Ehrlich Ascites Tumor Cells Cultured in Vitro

Peter Traub; Annemarie Scherbarth; Willingale-Theune J; Ulrike Traub

Ehrlich ascites tumor (EAT) cells propagated in mass suspension culture were used as a starting material for the simultaneous isolation and purification of large quantities of the intermediate filament protein vimentin and the nuclear lamins A/C and B. Triton cytoskeletons, obtained by repeated washing of cells with a low ionic strength buffer containing Triton X-100 and 4 mM Mg2+, were extracted with 6 M urea at low salt concentration and in the presence of EDTA. Separation of solubilized proteins from unfolded chromatin (DNA) was accomplished by recondensation of the chromatin (DNA) in the presence of Mg2+ before centrifugation. To achieve separation of vimentin from nuclear lamins, the urea extract was subjected to DEAE-Sepharose CL-6B chromatography. Single-stranded DNA-cellulose chromatography was employed for the final purification of vimentin and for the separation of lamin B from lamins A/C. Further purification of lamin B was carried out by CM-Sepharose CL-6B chromatography and of lamins A/C by chromatography on hydroxylapatite. All chromatographies were performed in the presence of 6 M urea. 500 g of pelleted EAT cells yielded approximately 700 mg of vimentin, 225 mg of lamins A/C and 21 mg of lamin B. 2D-polyacrylamide gel electrophoresis revealed great microheterogeneity of lamins A/C, which to a high extent was due to phosphorylation, whereas lamin B was much less heterogeneous. In the absence of urea and at low salt concentration, lamins A/C required pH 5 to stay in solution whereas lamin B required pH 7.5. Increasing the salt concentration to 150 or 250 mM NaCl resulted in the formation of paracrystals from a urea-free mixture of lamins A/C and B. Although the lamins could not be assembled into intermediate filaments under a variety of ionic conditions, the preparations obtained will be useful for further biochemical characterization of these nuclear proteins.


Journal of Cell Science | 1992

Salt-stable interaction of the amino-terminal head region of vimentin with the alpha-helical rod domain of cytoplasmic intermediate filament proteins and its relevance to protofilament structure and filament formation and stability

Peter Traub; Annemarie Scherbarth; Wolfram Wiegers; Robert L. Shoeman


Journal of Biological Chemistry | 1988

The binding in vitro of the intermediate filament protein vimentin to synthetic oligonucleotides containing telomere sequences.

Robert L. Shoeman; S. Wadle; Annemarie Scherbarth; Peter Traub


European Journal of Cell Biology | 1987

Efficient interaction of nonpolar lipids with intermediate filaments of the vimentin type.

Peter Traub; Perides G; Kühn S; Annemarie Scherbarth


European Journal of Cell Biology | 1989

Expression of vimentin and nuclear lamins during the in vitro differentiation of human promyelocytic leukemia cells HL-60

Micheline Paulin−Levasseur; Günter Giese; Annemarie Scherbarth; Peter Traub

Collaboration


Dive into the Annemarie Scherbarth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge