Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annemie Ryngaert is active.

Publication


Featured researches published by Annemie Ryngaert.


Applied and Environmental Microbiology | 2004

Occurrence and Phylogenetic Diversity of Sphingomonas Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons

Natalie Leys; Annemie Ryngaert; Leen Bastiaens; Willy Verstraete; Eva M. Top; Dirk Springael

ABSTRACT Bacterial strains of the genus Sphingomonas are often isolated from contaminated soils for their ability to use polycyclic aromatic hydrocarbons (PAH) as the sole source of carbon and energy. The direct detection of Sphingomonas strains in contaminated soils, either indigenous or inoculated, is, as such, of interest for bioremediation purposes. In this study, a culture-independent PCR-based detection method using specific primers targeting the Sphingomonas 16S rRNA gene combined with denaturing gradient gel electrophoresis (DGGE) was developed to assess Sphingomonas diversity in PAH-contaminated soils. PCR using the new primer pair on a set of template DNAs of different bacterial genera showed that the method was selective for bacteria belonging to the family Sphingomonadaceae. Single-band DGGE profiles were obtained for most Sphingomonas strains tested. Strains belonging to the same species had identical DGGE fingerprints, and in most cases, these fingerprints were typical for one species. Inoculated strains could be detected at a cell concentration of 104 CFU g of soil−1. The analysis of Sphingomonas population structures of several PAH-contaminated soils by the new PCR-DGGE method revealed that soils containing the highest phenanthrene concentrations showed the lowest Sphingomonas diversity. Sequence analysis of cloned PCR products amplified from soil DNA revealed new 16S rRNA gene Sphingomonas sequences significantly different from sequences from known cultivated isolates (i.e., sequences from environmental clones grouped phylogenetically with other environmental clone sequences available on the web and that possibly originated from several potential new species). In conclusion, the newly designed Sphingomonas-specific PCR-DGGE detection technique successfully analyzed the Sphingomonas communities from polluted soils at the species level and revealed different Sphingomonas members not previously detected by culture-dependent detection techniques.


Hydrometallurgy | 2003

Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria

L. Diels; Piet Hein Spaans; S. Van Roy; L. Hooyberghs; Annemie Ryngaert; Hans Wouters; E. Walter; J. Winters; Lynne E. Macaskie; John A. Finlay; B. Pernfuss; H. Woebking; Thomas Pümpel; Marios Tsezos

Abstract Large volumes of wastewater containing metals such as Cd, Zn, Cu, Pb, Hg, Ni or Co are mainly treated by precipitation processes. However, waters treated in such ways do not always meet regulatory standards. And in many cases, ecotaxes must be paid on the heavy metals load in the discharged water. Therefore, a second polishing treatment is often necessary. In order to be economically acceptable, the technology must be cheap and adapted to the treatment of large volumes. The use of sand filters inoculated with heavy metal biosorbing and bioprecipitating bacteria fulfils these objectives. The system is based on a moving bed sand filter. A biofilm is formed on the sand grains after inoculation with heavy metal-resistant bacteria able to biosorb or to bioprecipitate heavy metals. Passage of the wastewater over these biofilms leads to the binding of the metals to the biofilm and consequently the removal of the metals from the wastewater. The metal-laden biofilm is removed from the sand grains in a sand washer created by an airlift for the continuous movement of the filter bed. The metal-loaded biomass is separated from the sand in a labyrinth on the top of the sand washer. Nutrients and a carbon source are provided continuously in the system in order to promote the regrowth of the biofilm on the sand grains. The reactor can be used for the removal of heavy metals, nitrates and some COD. The obtained biosludge contains heavy metals at concentrations of more than 10% of the dry weight. The treatment of the sludge is also taken into account.


Chemosphere | 2010

Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil

Christine Lors; Annemie Ryngaert; Frédéric Périé; Ludo Diels; Denis Damidot

The monitoring of a windrow treatment applied to soil contaminated by mostly 2-, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 16S rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82% respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma-proteobacteria, in particular, the Enterobacteria and Pseudomonas genera, which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely, other species, like the Beta-proteobacteria, were detected after 3months, when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus, presence of the Beta-proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH-contaminated soil.


FEMS Microbiology Ecology | 2004

Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting

Karolien Vanbroekhoven; Annemie Ryngaert; Pierre Wattiau; René De Mot; Dirk Springael

A primer pair was designed to selectively amplify a fragment of the Acinetobacter 16S rRNA gene from environmental samples by PCR. 16S rRNA gene products were only obtained in PCRs with DNA from members of the genus Acinetobacter and not with DNA from other bacterial species. Denaturing gradient gel electrophoresis (DGGE) of the Acinetobacter 16S rRNA gene amplicons enabled discrimination between different Acinetobacter species. PCR using the Acinetobacter primer pair allowed detection of Acinetobacter in soil with a detection limit of 10(4) cells g(-1) soil, but attachment of the GC-clamp to the forward primer resulted in a 100-fold decrease in sensitivity. Using a nested PCR approach, the detection limit could be lowered to at least 10 cells g(-1) of soil. The method was applied to assess Acinetobacter diversity in soil samples originating from different historically hydrocarbon-contaminated sites. In addition, for one oil-contaminated soil, the dynamics of the Acinetobacter community in response to different treatments was monitored over time in a laboratory biostimulation experimental set-up. In all cases, bands in the DGGE fingerprints were cloned and sequenced. Environmental samples taken from a mineral oil-contaminated site and from a kerosene-contaminated site demonstrated relatively simple Acinetobacter 16S rRNA gene fingerprints with A. lwoffii and A. johnsonii as dominant members. In contrast, soils derived from MTBE- and BTEX-contaminated sites did not harbor detectable Acinetobacter populations. Although Acinetobacter was detected in the soil employed for the biostimulation experiment prior to treatment, substantial changes in its populations were observed depending on the treatment.


Applied and Environmental Microbiology | 2007

Characterization of Cultures Enriched from Acidic Polycyclic Aromatic Hydrocarbon-Contaminated Soil for Growth on Pyrene at Low pH

Maarten Uyttebroek; Steven Vermeir; Pierre Wattiau; Annemie Ryngaert; Dirk Springael

ABSTRACT Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil.


Applied and Environmental Microbiology | 2001

Occurrence of Tn4371-Related Mobile Elements and Sequences in (Chloro)biphenyl-Degrading Bacteria

Dirk Springael; Annemie Ryngaert; Christophe Merlin; Ariane Toussaint; Max Mergeay

ABSTRACT Tn4371, a 55-kb transposable element involved in the degradation and biphenyl or 4-chlorobiphenyl identified inRalstonia eutropha A5, displays a modular structure including a phage-like integrase gene (int), aPseudomonas-like (chloro)biphenyl catabolic gene cluster (bph), and RP4- and Ti-plasmid-like transfer genes (trb) (C. Merlin, D. Springael, and A. Toussaint, Plasmid 41:40–54, 1999). Southern blot hybridization was used to examine the presence of different regions of Tn4371 in a collection of (chloro)biphenyl-degrading bacteria originating from different habitats and belonging to different bacterial genera. Tn4371-related sequences were never detected on endogenous plasmids. Although the gene probes containing only bph sequences hybridized to genomic DNA from most strains tested, a limited selection of strains, all β-proteobacteria, displayed hybridization patterns similar to the Tn4371 bph cluster. Homology between Tn4371 and DNA of two of those strains, originating from the same area as strain A5, extended outside the catabolic genes and covered the putative transfer region of Tn4371. On the other hand, none of the (chloro)biphenyl degraders hybridized with the outer left part of Tn4371 containing the int gene. Thebph catabolic determinant of the two strains displaying homology to the Tn4371 transfer genes and a third strain isolated from the A5 area could be mobilized to a R. eutropha recipient, after insertion into an endogenous or introduced IncP1 plasmid. The mobilized DNA of those strains included all Tn4371 homologous sequences previously identified in their genome. Our observations show that the bph genes present on Tn4371 are highly conserved between different (chloro)biphenyl-degrading hosts, isolated globally but belonging mainly to the β-proteobacteria. On the other hand, Tn4371-related mobile elements carrying bphgenes are apparently only found in isolates from the environment that provided the Tn4371-bearing isolate A5.


Microbial Ecology | 2005

Culture Independent Detection of Sphingomonas sp. EPA 505 Related Strains in Soils Contaminated with Polycyclic Aromatic Hydrocarbons (PAHs)

Nm Leys; Annemie Ryngaert; Leen Bastiaens; Em Top; Willy Verstraete; Dirk Springael

The Sphingomonas genus hosts many interesting pollutant-degrading strains. Sphingomonas sp. EPA505 is the best studied polycyclic aromatic hydrocarbon (PAH)-degrading Sphingomonas strain. Based on 16S rRNA gene sequence analysis, Sphingomonas sp. strain EPA505 forms a separate branch in the Sphingomonas phylogenetic tree grouping exclusively PAH-degrading isolates. For specific PCR detection and monitoring of Sphingomonas sp. EPA505 and related strains in PAH-contaminated soils, a new 16S rRNA gene-based primer set was designed. The new primer set was shown to be highly selective for Sphingomonas sp. strain EPA505 as it only amplified DNA from strain EPA505 and not from other tested Sphingomonas strains or soil bacteria not belonging to the Sphingomonas genus. Using DNA extracts of a variety of inoculated PAH-contaminated soils, the primer pair was able to detect EPA505 in concentrations as low as 102 cells per gram of soil. Applying the new primer set, 16S rRNA gene fragments which were 99–100% similar to the corresponding gene of strain EPA505 were amplified from four of five PAH-contaminated soils. On the other hand, no PCR products were obtained from any of five tested uncontaminated soils. The preferential presence of EPA505 related Sphingomonas strains in PAH-contaminated soils with very different contamination profiles and different origin suggests an important role of this type of Sphingomonas in the natural Sphingomonas community colonizing PAH-contaminated sites.


Microbiology | 1996

RP4::Mu3A-mediated in vivo cloning and transfer of a chlorobiphenyl catabolic pathway

Dirk Springael; J van Thor; H Goorissen; Annemie Ryngaert; R. De Baere; P Van Hauwe; L.C.M. Commandeur; J.R. Parsons; R. De Wachter; Max Mergeay

Chromosomal DNA fragments encoding the ability to utilize biphenyl as sole carbon source (Bph+) were mobilized by means of plasmid RP4::Mu3A from strain JB1 (tentatively identified as Burkholderia sp.) to Alcaligenes eutrophus CH34 at a frequency of 10(-3) per transferred plasmid. The mobilized DNA integrated into the recipient chromosome or was recovered as catabolic prime plasmids. Three Bph+ prime plasmids were transferred from A. eutrophus to Escherichia coli and back to A. eutrophus without modification of the phenotype. The transferred Bph+ DNA segments allowed metabolism of biphenyl, 2-, 3- and 4-chlorobiphenyl, and diphenylmethane. Genes involved in biphenyl degradation were identified on the prime plasmids by DNA-DNA hybridization and by gene cloning. Bph+ prime plasmids were transferred to Burkholderia cepacia, Pseudomonas aeruginosa, Comamonas testosteroni and A. eutrophus and the catabolic genes were expressed in those hosts. Transfer of the plasmid to the 3-chlorobenzoate-degrading bacterium Pseudomonas sp. B13 allowed the recipient to mineralize 3-chlorobiphenyl. Other catabolic prime plasmids were obtained from JB1 by selection on m-hydroxybenzoate and tyrosine as carbon sources. 16S rRNA sequence data demonstrated that the in vivo transfer of bph was achieved between bacteria belonging to two different branches of the beta-Proteobacteria.


FEMS Microbiology Ecology | 2014

Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons.

Kelly Hamonts; Annemie Ryngaert; Hauke Smidt; Dirk Springael; Winnie Dejonghe

Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic, CAH-polluted sediments of the Zenne River. Based on PCR-DGGE analysis, a high diversity of Bacteria, sulfate-reducing bacteria, Geobacteraceae, methanogenic archaea, and CAH-respiring Dehalococcoides was found. Depth in the riverbed, organic carbon content, CAH content and texture of the sediment, pore water temperature and conductivity, and concentrations of toluene and methane significantly contributed to the variance in the microbial community structure. On a meter scale, CAH concentrations alone explained only 6% of the variance in the Dehalococcoides and sulfate-reducing communities. On a cm-scale, however, CAHs explained 14.5-35% of the variation in DGGE profiles of Geobacteraceae, methanogens, sulfate-reducing bacteria, and Bacteria, while organic carbon content explained 2-14%. Neither the presence of the CAH reductive dehalogenase genes tceA, bvcA, and vcrA, nor the community structure of the targeted groups significantly differed between riverbed locations showing either no attenuation or reductive dechlorination, indicating that the microbial community composition was not a limiting factor for biotransformation in the Zenne sediments.


Archive | 1999

New Membrane Reactor Concept for the Biodegradation of Recalcitrant Organic Compounds

Kurt Peys; Sandra Van Roy; Annemie Ryngaert; Dirk Springael; Carlo Vandecasteele; L. Diels

Waste water treatments are very often restricted to BOD and nutrient removal. However two problems still arise being heavy metals and toxic organic compounds, resposible for high COD concentrations. The BICMER (Bacteria Immobilized Composite MEmbrane Reactor) stands for the removal and recovery of heavy metals and the complete mineralization of recalcitrant organics. The BICMER functions via specific immolibized bacteria which are responsible for metal removal or biodegradation capacity.

Collaboration


Dive into the Annemie Ryngaert's collaboration.

Top Co-Authors

Avatar

Dirk Springael

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

L. Diels

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar

Leen Bastiaens

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Pierre Wattiau

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Ludo Diels

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Hamonts

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Kurt Peys

Flemish Institute for Technological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge