Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annemieke J. M. H. Verkerk is active.

Publication


Featured researches published by Annemieke J. M. H. Verkerk.


Nature Genetics | 1993

A Point mutation in the FMR-1 gene associated with fragile X mental retardation.

Kristel De Boulle; Annemieke J. M. H. Verkerk; Edwin Reyniers; Lieve Vits; Jan Hendrickx; Bernadette Van Roy; Feikje Van Den Bos; Esther de Graaff; Ben A. Oostra; Patrick J. Willems

The vast majority of patients with fragile X syndrome show a folate–sensitive fragile site at Xq27.3 (FRAXA) at the cytogenetic level, and both amplification of the (CGG)n repeat and hypermethylation of the CpG island in the 5′ fragile X gene (FMR–1) at the molecular level. We have studied the FMR–1 gene of a patient with the fragile X phenotype but without cytogenetic expression of FRAXA, a (CGG)n repeat of normal length and an unmethylated CpG island. We find a single point mutation in FMR–1 resulting in an Ne367Asn substitution. This de novo mutation is absent in the patients family and in 130 control X chromosomes, suggesting that the mutation causes the clinical abnormalities. Our results suggest that mutations in FMR–1 are directly responsible for fragile X syndrome, irrespective of possible secondary effects caused by FRAXA


Nature Genetics | 2010

Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin

Joseph A. Borg; Petros Papadopoulos; Marianthi Georgitsi; Laura Gutierrez; Godfrey Grech; Pavlos Fanis; Marios Phylactides; Annemieke J. M. H. Verkerk; Peter J. van der Spek; Christian Scerri; Wilhelmina Cassar; Ruth Galdies; Wilfred van IJcken; Zeliha Ozgur; Nynke Gillemans; Jun Hou; Marisa Bugeja; Frank Grosveld; Marieke von Lindern; Alex E. Felice; George P. Patrinos; Sjaak Philipsen

Hereditary persistence of fetal hemoglobin (HPFH) is characterized by persistent high levels of fetal hemoglobin (HbF) in adults. Several contributory factors, both genetic and environmental, have been identified but others remain elusive. HPFH was found in 10 of 27 members from a Maltese family. We used a genome-wide SNP scan followed by linkage analysis to identify a candidate region on chromosome 19p13.12–13. Sequencing revealed a nonsense mutation in the KLF1 gene, p.K288X, which ablated the DNA-binding domain of this key erythroid transcriptional regulator. Only family members with HPFH were heterozygous carriers of this mutation. Expression profiling on primary erythroid progenitors showed that KLF1 target genes were downregulated in samples from individuals with HPFH. Functional assays suggested that, in addition to its established role in regulating adult globin expression, KLF1 is a key activator of the BCL11A gene, which encodes a suppressor of HbF expression. These observations provide a rationale for the effects of KLF1 haploinsufficiency on HbF levels.


Genomics | 2003

Cntnap2 is disrupted in a family with gilles de la tourette syndrome and obsessive compulsive disorder

Annemieke J. M. H. Verkerk; Carol A. Mathews; Marijke Joosse; Bert H.J. Eussen; Peter Heutink; Ben A. Oostra

Gilles de la Tourette syndrome (GTS) is a sporadic or inherited complex neuropsychiatric disorder characterized by involuntary motor and vocal tics. There is comorbidity with disorders like obsessive compulsive disorder and attention deficit hyperactivity disorder. Until now linkage analysis has pointed to a number of chromosomal locations, but has failed to identify a clear candidate gene(s). We have investigated a GTS family with a complex chromosomal insertion/translocation involving chromosomes 2 and 7. The affected father [46,XY,inv(2) (p23q22),ins(7;2) (q35-q36;p21p23)] and two affected children [46,XX,der(7)ins(7;2)(q35-q36;p21p23) and 46,XY,der(7)ins(7;2)(q35-q36;p213p23)] share a chromosome 2p21-p23 insertion on chromosome 7q35-q36, thereby interrupting the contactin-associated protein 2 gene (CNTNAP2). This gene encodes a membrane protein located in a specific compartment at the nodes of Ranvier of axons. We hypothesize that disruption or decreased expression of CNTNAP2 could lead to a disturbed distribution of the K(+) channels in the nervous system, thereby influencing conduction and/or repolarization of action potentials, causing unwanted actions or movements in GTS.


Nature Genetics | 2010

A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14

Abbas M Solouki; Virginie J. M. Verhoeven; Cornelia M. van Duijn; Annemieke J. M. H. Verkerk; M. Kamran Ikram; Pirro G. Hysi; Dominiek D. G. Despriet; Leonieke M. E. van Koolwijk; Lintje Ho; Wishal D. Ramdas; Monika A. Czudowska; Robert W. A. M. Kuijpers; Najaf Amin; Maksim Struchalin; Yurii S. Aulchenko; Gabriel van Rij; Frans C C Riemslag; Terri L. Young; David A. Mackey; Tim D. Spector; Theo G. M. F. Gorgels; Jacqueline J. M. Willemse-Assink; Aaron Isaacs; Rogier Kramer; Sigrid Swagemakers; Arthur A. B. Bergen; Andy A L J van Oosterhout; Ben A. Oostra; Fernando Rivadeneira; André G. Uitterlinden

Refractive errors are the most common ocular disorders worldwide and may lead to blindness. Although this trait is highly heritable, identification of susceptibility genes has been challenging. We conducted a genome-wide association study for refractive error in 5,328 individuals from a Dutch population-based study with replication in four independent cohorts (combined 10,280 individuals in the replication stage). We identified a significant association at chromosome 15q14 (rs634990, P = 2.21 × 10−14). The odds ratio of myopia compared to hyperopia for the minor allele (minor allele frequency = 0.47) was 1.41 (95% CI 1.16–1.70) for individuals heterozygous for the allele and 1.83 (95% CI 1.42–2.36) for individuals homozygous for the allele. The associated locus is near two genes that are expressed in the retina, GJD2 and ACTC1, and appears to harbor regulatory elements which may influence transcription of these genes. Our data suggest that common variants at 15q14 influence susceptibility for refractive errors in the general population.


The New England Journal of Medicine | 2013

PLS3 Mutations in X-Linked Osteoporosis with Fractures

Fleur S. van Dijk; M. Carola Zillikens; Dimitra Micha; Markus Riessland; Carlo Marcelis; Christine E.M. de Die-Smulders; Janine Milbradt; A.A. Franken; Arjan J. Harsevoort; Klaske D. Lichtenbelt; Hans E. Pruijs; M. Estela Rubio-Gozalbo; Rolf Zwertbroek; Youssef Moutaouakil; Jaqueline Egthuijsen; Matthias Hammerschmidt; Renate Bijman; Cor M. Semeins; Astrid D. Bakker; Vincent Everts; Jenneke Klein-Nulend; Natalia Campos-Obando; Albert Hofman; Gerard J. te Meerman; Annemieke J. M. H. Verkerk; André G. Uitterlinden; Alessandra Maugeri; Erik A. Sistermans; Quinten Waisfisz; Hanne Meijers-Heijboer

Plastin 3 (PLS3), a protein involved in the formation of filamentous actin (F-actin) bundles, appears to be important in human bone health, on the basis of pathogenic variants in PLS3 in five families with X-linked osteoporosis and osteoporotic fractures that we report here. The bone-regulatory properties of PLS3 were supported by in vivo analyses in zebrafish. Furthermore, in an additional five families (described in less detail) referred for diagnosis or ruling out of osteogenesis imperfecta type I, a rare variant (rs140121121) in PLS3 was found. This variant was also associated with a risk of fracture among elderly heterozygous women that was two times as high as that among noncarriers, which indicates that genetic variation in PLS3 is a novel etiologic factor involved in common, multi-factorial osteoporosis.


American Journal of Human Genetics | 2009

Mutation in the AP4M1 Gene Provides a Model for Neuroaxonal Injury in Cerebral Palsy

Annemieke J. M. H. Verkerk; Rachel Schot; Belinda Dumee; Karlijn Schellekens; Sigrid Swagemakers; Aida M. Bertoli-Avella; Maarten H. Lequin; Jeroen Dudink; Paul Govaert; A.L. van Zwol; Jennifer Hirst; Marja W. Wessels; Coriene E. Catsman-Berrevoets; Frans W. Verheijen; Esther de Graaff; Irenaeus F.M. de Coo; Johan M. Kros; Rob Willemsen; Patrick J. Willems; Peter J. van der Spek; Grazia M.S. Mancini

Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography. Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G-->T), was identified. AP4M1, encoding for the mu subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRdelta2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury.


American Journal of Human Genetics | 1999

Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas.

Leendert Looijenga; Ad Gillis; Annemieke J. M. H. Verkerk; Wim L.J. van Putten; J. Wolter Oosterhuis

In female mammalian cells, one of the two X chromosomes is inactivated to compensate for gene-dose effects, which would be otherwise doubled compared with that in male cells. In somatic lineages in mice, the inactive X chromosome can be of either paternal or maternal origin, whereas the paternal X chromosome is specifically inactivated in placental tissue. In human somatic cells, X inactivation is mainly random, but both random and preferential paternal X inactivation have been reported in placental tissue. To shed more light on this issue, we used PCR to study the methylation status of the polymorphic androgen-receptor gene in full-term human female placentas. The sites investigated are specifically methylated on the inactive X chromosome. No methylation was found in microdissected stromal tissue, whether from placenta or umbilical cord. Of nine placentas for which two closely apposed samples were studied, X inactivation was preferentially maternal in three, was preferentially paternal in one, and was heterogeneous in the remaining five. Detailed investigation of two additional placentas demonstrated regions with balanced (1:1 ratio) preferentially maternal and preferentially paternal X inactivation. No differences in ratio were observed in samples microdissected to separate trophoblast and stromal tissues. We conclude that methylation of the androgen receptor in human full-term placenta is specific for trophoblastic cells and that the X chromosome can be of either paternal or maternal origin.


PLOS ONE | 2010

A new strategy to identify and annotate human RPE-specific gene expression.

Judith C. Booij; Jacoline B. ten Brink; Sigrid Swagemakers; Annemieke J. M. H. Verkerk; Anke H. W. Essing; Peter J. van der Spek; Arthur A. B. Bergen

Background To identify and functionally annotate cell type-specific gene expression in the human retinal pigment epithelium (RPE), a key tissue involved in age-related macular degeneration and retinitis pigmentosa. Methodology RPE, photoreceptor and choroidal cells were isolated from selected freshly frozen healthy human donor eyes using laser microdissection. RNA isolation, amplification and hybridization to 44 k microarrays was carried out according to Agilent specifications. Bioinformatics was carried out using Rosetta Resolver, David and Ingenuity software. Principal Findings Our previous 22 k analysis of the RPE transcriptome showed that the RPE has high levels of protein synthesis, strong energy demands, is exposed to high levels of oxidative stress and a variable degree of inflammation. We currently use a complementary new strategy aimed at the identification and functional annotation of RPE-specific expressed transcripts. This strategy takes advantage of the multilayered cellular structure of the retina and overcomes a number of limitations of previous studies. In triplicate, we compared the transcriptomes of RPE, photoreceptor and choroidal cells and we deduced RPE specific expression. We identified at least 114 entries with RPE-specific gene expression. Thirty-nine of these 114 genes also show high expression in the RPE, comparison with the literature showed that 85% of these 39 were previously identified to be expressed in the RPE. In the group of 114 RPE specific genes there was an overrepresentation of genes involved in (membrane) transport, vision and ophthalmic disease. More fundamentally, we found RPE-specific involvement in the RAR-activation, retinol metabolism and GABA receptor signaling pathways. Conclusions In this study we provide a further specification and understanding of the RPE transcriptome by identifying and analyzing genes that are specifically expressed in the RPE.


Molecular Psychiatry | 2006

Genetic and clinical analysis of a large Dutch Gilles de la Tourette family

Annemieke J. M. H. Verkerk; D C Cath; H.C. Van der Linde; J Both; Peter Heutink; Guido J. Breedveld; Yurii S. Aulchenko; Ben A. Oostra

Gilles de la Tourette syndrome is a complex neuropsychiatric disorder, which becomes evident in childhood between the ages of 2 and 15 years. Tourette syndrome is defined by the occurrence of a large range and variable number of unwanted repetitive simple or complex motor and vocal tics that start in childhood and follow a waxing and waning course. A major gene for this syndrome has not yet been identified, probably owing to both genetic and phenotypic heterogeneity of this disease. This article describes the clinical evaluation of patients and family members in a large Dutch Gilles de la Tourette Syndrome pedigree and the decisions encountered with respect to phenotyping. The importance of an accurate definition of the Tourette phenotype is discussed, which is highly important for reliable genetic linkage and association studies. Subsequent linkage analysis resulted in three linkage peaks on different chromosomes 3q, 9q, and 13q. Multipoint analysis resulted in a single linkage peak with logarithm of odds score 2.55 with marker D3S1311 on chromosome 3q.


The Journal of Clinical Endocrinology and Metabolism | 2013

An activating mutation in the kinase homology domain of the natriuretic peptide receptor-2 causes extremely tall stature without skeletal deformities

Sabine Hannema; Hermine A. van Duyvenvoorde; Thomas Premsler; Ruey-Bing Yang; Thomas D. Mueller; Birgit Gassner; Heike Oberwinkler; Ferdinand Roelfsema; Gijs W.E. Santen; Timothy C. R. Prickett; Sarina G. Kant; Annemieke J. M. H. Verkerk; André G. Uitterlinden; Eric A. Espiner; Claudia Ruivenkamp; Wilma Oostdijk; Alberto M. Pereira; Monique Losekoot; Michaela Kuhn; J.M. Wit

BACKGROUND C-type natriuretic peptide (CNP)/natriuretic peptide receptor 2 (NPR2) signaling is essential for long bone growth. Enhanced CNP production caused by chromosomal translocations results in tall stature, a Marfanoid phenotype, and skeletal abnormalities. A similar phenotype was described in a family with an activating NPR2 mutation within the guanylyl cyclase domain. CASE Here we describe an extremely tall male without skeletal deformities, with a novel NPR2 mutation (p.Arg655Cys) located in the kinase homology domain. OBJECTIVES The objective of the study was to investigate the functional and structural effects of the NPR2 mutation. METHODS Guanylyl cyclase activities of wild-type vs mutant NPR2 were analyzed in transfected human embryonic kidney 293 cells and in skin fibroblasts. The former were also used to study possible interactions between both isoforms. Homology modeling was performed to understand the molecular impact of the mutation. RESULTS CNP-stimulated cGMP production by the mutant NPR2 was markedly increased in patient skin fibroblasts and transfected human embryonic kidney 293 cells. The stimulatory effects of ATP on CNP-dependent guanylyl cyclase activity were augmented, suggesting that this novel mutation enhances both the responsiveness of NPR2 to CNP and its allosteric modulation/stabilization by ATP. Coimmunoprecipitation showed that wild-type and mutant NPR2 can form stable heterodimers, suggesting a dominant-positive effect. In accordance with augmented endogenous receptor activity, plasma N-terminal pro-CNP (a marker of CNP production in tissues) was reduced in the proband. CONCLUSIONS We report the first activating mutation within the kinase homology domain of NPR2, resulting in extremely tall stature. Our observations emphasize the important role of this domain in the regulation of guanylyl cyclase activity and bone growth in response to CNP.

Collaboration


Dive into the Annemieke J. M. H. Verkerk's collaboration.

Top Co-Authors

Avatar

Ben A. Oostra

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sigrid Swagemakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Esther de Graaff

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Guido J. Breedveld

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Rachel Schot

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Rob Willemsen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge