Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annemieke Petrignani is active.

Publication


Featured researches published by Annemieke Petrignani.


Journal of Chemical Physics | 2005

Vibrationally resolved rate coefficients and branching fractions in the dissociative recombination of O2

Annemieke Petrignani; Wim J. van der Zande; P. C. Cosby; Fredrik Hellberg; Richard D. Thomas; Mats Larsson

We have studied the dissociative recombination of the first three vibrational levels of O(2) (+) in its electronic ground X (2)Pi(g) state. Absolute rate coefficients, cross sections, quantum yields and branching fractions have been determined in a merged-beam experiment in the heavy-ion storage ring, CRYRING, employing fragment imaging for the reaction dynamics. We present the absolute total rate coefficients as function of collision energies up to 0.4 eV for five different vibrational populations of the ion beam, as well as the partial (vibrationally resolved) rate coefficients and the branching fractions near 0 eV collision energy for the vibrational levels v=0, 1, and 2. The vibrational populations used were produced in a modified electron impact ion source, which has been calibrated using Cs-O(2)(+) dissociative charge transfer reactions. The measurements indicate that at low collision energies, the total rate coefficient is weakly dependent on the vibrational excitation. The calculated thermal rate coefficient at 300 K decreases upon vibrational excitation. The partial rate coefficients as well as the partial branching fractions are found to be strongly dependent on the vibrational level. The partial rate coefficient is the fastest for v=0 and goes down by a factor of two or more for v=1 and 2. The O((1)S) quantum yield, linked to the green airglow, increases strongly upon increasing vibrational level. The effects of the dissociative recombination reactions and super elastic collisions on the vibrational populations are discussed.


Journal of Chemical Physics | 2008

Chemical probing spectroscopy of H3+ above the barrier to linearity

Holger Kreckel; Dennis Bing; S. Reinhardt; Annemieke Petrignani; Max H. Berg; A. Wolf

We have performed chemical probing spectroscopy of H(3) (+) ions trapped in a cryogenic 22-pole ion trap. The ions were buffer gas cooled to approximately 55 K by collisions with helium and argon. Excitation to states above the barrier to linearity was achieved by a Ti:sapphire laser operated between 11 300 and 13 300 cm(-1). Subsequent collisions of the excited H(3) (+) ions with argon lead to the formation of ArH(+) ions that were detected by a quadrupole mass spectrometer with high sensitivity. We report the observation of 17 previously unobserved transitions to states above the barrier to linearity. Comparison to theoretical calculations suggests that the transition strengths of some of these lines are more than five orders of magnitude smaller than those of the fundamental band, which renders them-to the best of our knowledge-the weakest H(3) (+) transitions observed to date.


Journal of Chemical Physics | 2005

Electron energy-dependent product state distributions in the dissociative recombination of O2+

Annemieke Petrignani; Fredrik Hellberg; Richard D. Thomas; Mats Larsson; P. C. Cosby; Wim J. van der Zande

We present product state distributions and quantum yields from the dissociative recombination reaction of O2+ in its electronic and vibrational ground states as a function of electron collision energy between 0 and 300 meV. The experiments have been performed in the heavy-ion storage ring, CRYRING, and use a cold hollow-cathode discharge source for the production of cold molecular oxygen ions. The branching fractions over the different dissociation limits show distinct oscillations while the resulting product quantum yields are largely independent of electron collision energy above 40 meV. The branching results are well reproduced assuming an isotropic dissociation process, in contrast with recent theoretical predictions.


Journal of Chemical Physics | 2003

Dissociative recombination of NO+: Dynamics of the X 1Σ+ and a 3Σ+ electronic states

Fredrik Hellberg; S. Rosén; Richard D. Thomas; A. Neau; Mats Larsson; Annemieke Petrignani; Wim J. van der Zande

We have studied the dissociation dynamics of NO+ ions in their ground, X 1Σ+, and first excited metastable, a 3Σ+ states, induced by the capture of electrons of variable collision energy in the dissociative recombination (DR) process. The branching over the different dissociation channels has been measured in a merged-beam experiment on the heavy-ion storage ring, CRYRING. In accord with previous observations, NO+ (X 1Σ+,v=0) ions dissociate dominantly to the N(2D)+O(3P) product limit at 0 and 1.2 eV collision energies. In contrast to earlier reports, the spin-forbidden N(4S)+O(1D) dissociation limit contributes 0(±2)% at 0 eV. At 5.6 eV a new channel coupled to the production of ground-state atoms becomes more important, but no increase in the production of ground-state product atoms was observed. All observed branching fractions compare very favorably with predictions from a simple statistical model, which is based on the multiplicity of each dissociation limit in combination with spin conservation during the dissociation and the initial electron capture. We also report the distribution of fragment pairs from the DR reaction involving the metastable a 3Σ+ state. This state is found to dissociate to nearly all of the energetically allowed product pairs. The lifetime of the a 3Σ+ state is found to be 730(±50) ms, in agreement with earlier, sometimes indirect, observations. The experimental observations have been complemented with ab initio calculations on the different radiative decay processes both for the X 1Σ+ and the a 3Σ+ states. It is found that vibrational relaxation via infrared radiation is faster for NO+ (a 3Σ+,v>0) ions than the electronic decay of these metastable-state ions to the ground state.We have studied the dissociation dynamics of NO+ ions in their ground, X 1Σ+, and first excited metastable, a 3Σ+ states, induced by the capture of electrons of variable collision energy in the dissociative recombination (DR) process. The branching over the different dissociation channels has been measured in a merged-beam experiment on the heavy-ion storage ring, CRYRING. In accord with previous observations, NO+ (X 1Σ+,v=0) ions dissociate dominantly to the N(2D)+O(3P) product limit at 0 and 1.2 eV collision energies. In contrast to earlier reports, the spin-forbidden N(4S)+O(1D) dissociation limit contributes 0(±2)% at 0 eV. At 5.6 eV a new channel coupled to the production of ground-state atoms becomes more important, but no increase in the production of ground-state product atoms was observed. All observed branching fractions compare very favorably with predictions from a simple statistical model, which is based on the multiplicity of each dissociation limit in combination with spin conservation duri...


The Astrophysical Journal | 2012

COLD ELECTRON REACTIONS PRODUCING THE ENERGETIC ISOMER OF HYDROGEN CYANIDE IN INTERSTELLAR CLOUDS

Mario B. Mendes; Hendrik Buhr; Max H. Berg; M. Froese; M. Grieser; O. Heber; Brandon Jordon-Thaden; Claude Krantz; Oldrich Novotný; Steffen Novotny; Dmitry A. Orlov; Annemieke Petrignani; M. L. Rappaport; R. Repnow; D. Schwalm; Andrey Shornikov; Julia Stützel; A. Wolf

Using event-by-event fragment momentum spectroscopy in a storage-ring merged-beams experiment, we find laboratory evidence that in the dissociative recombination (DR) of HCNH{sup +} with cold electrons the energetic isomer HNC is produced with a high yield, similar to that of HCN. With a newly implemented mass-sensitive fragment imaging detector, we analyze the kinetic energy release of the triatomic fragments DCN/DNC from the DR reaction of the isotopologue DCND{sup +} with cold (near 10 K) electrons. The results show that the internal energy of these fragments is extremely high, far exceeding the isomerization barrier between DNC and DCN. From this laboratory characterization of the DR reaction we conclude that also the triatomic fragment HCN/HNC from the DR of HCNH{sup +} will carry a large amount of ro-vibrational excitation and show that this implies an isomeric production ratio in a narrow range near unity.


Journal of Physical Chemistry A | 2010

Fragmentation Channels in Dissociative Electron Recombination with Hydronium and Other Astrophysically Important Species

Oldrich Novotny; Henrik Buhr; Julia Stützel; Mario B. Mendes; Max H. Berg; Dennis Bing; M. Froese; M. Grieser; O. Heber; Brandon Jordon-Thaden; Claude Krantz; M. Lange; M. Lestinsky; Steffen Novotny; Sebastian Menk; Dmitry A. Orlov; Annemieke Petrignani; M. L. Rappaport; Andrey Shornikov; D. Schwalm; A. Wolf

We report on our recent studies of dissociative recombination (DR) employing two different fragment imaging detection techniques at the TSR storage ring in Heidelberg, Germany. Principles of an upgraded 3D optical system and the new energy-sensitive multistrip detector (EMU) are explained together with possible applications in reaction dynamics studies. With the EMU imaging detector we succeeded to observe the branching ratios after DR of deuterated hydronium ions D(3)O(+) at energies of 0-0.5 and 4-21 eV. The branching ratios are almost constant at low energies while above 6 eV both oxygen-producing channels O + D + D + D and O + D(2) + D strongly increase and dominate by about 85% at 11 eV. To demonstrate further capabilities of our fragment imaging detectors, we also summarize some of our additional recent studies on DR of molecular ions important for astrophysics as well as for fundamental unimolecular dynamics.


Journal of Chemical Physics | 2005

Dissociative recombination of the weakly bound NO-dimer cation: Cross sections and three-body dynamics

Annemieke Petrignani; Patrik U. Andersson; Jan B. C. Pettersson; Richard D. Thomas; Fredrik Hellberg; A. Ehlerding; Mats Larsson; Wim J. van der Zande

Dissociative recombination (DR) of the dimer ion (NO)(2) (+) has been studied at the heavy-ion storage ring CRYRING at the Manne Siegbahn Laboratory, Stockholm. The experiments were aimed at determining details on the strongly enhanced thermal rate coefficient for the dimer, interpreting the dissociation dynamics of the dimer ion, and studying the degree of similarity to the behavior in the monomer. The DR rate reveals that the very large efficiency of the dimer rate with respect to the monomer is limited to electron energies below 0.2 eV. The fragmentation products reveal that the breakup into the three-body channel NO+O+N dominates with a probability of 0.69+/-0.02. The second most important channel yields NO+NO fragments with a probability of 0.23+/-0.03. Furthermore, the dominant three-body breakup yields electronic and vibrational ground-state products, NO(upsilon=0)+N((4)S)+O((3)P), in about 45% of the cases. The internal product-state distribution of the NO fragment shows a similarity with the product-state distribution as predicted by the Franck-Condon overlap between a NO moiety of the dimer ion and a free NO. The dissociation dynamics seem to be independent of the NO internal energy. Finally, the dissociation dynamics reveal a correlation between the kinetic energy of the NO fragment and the degree of conservation of linear momentum between the O and N product atoms. The observations support a mechanism in which the recoil takes place along one of the NO bonds in the dimer.


Journal of Chemical Physics | 2014

Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory

Annemieke Petrignani; Max H. Berg; Florian Grussie; A. Wolf; Irina I. Mizus; Oleg L. Polyansky; Jonathan Tennyson; Nikolai F. Zobov; Michele Pavanello; Ludwik Adamowicz

The visible spectrum of H3(+) is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H3(+) up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein B coefficients. Ab initio predictions for the Einstein B coefficients are obtained from a highly precise dipole moment surface of H3(+) and found to be in excellent agreement, even in the region where states have been classified as chaotic.


XXV International Conference on Photonic, Electronic and Atomic Collisions | 2007

Electron collisions and rovibrational action spectroscopy of cold H3+ molecules

Holger Kreckel; Annemieke Petrignani; Max H. Berg; Dennis Bing; S. Reinhardt; S. Altevogt; Hendrik Buhr; M. Froese; Jens Hoffmann; Brandon Jordon-Thaden; Claude Krantz; M. Lestinsky; Mario B. Mendes; Oldrich Novotny; Steffen Novotny; H. B. Pedersen; D. A. Orlov; J. Mikosch; Radek Plašil; J. Glosik; D. Schwalm; A. Wolf

Electron recombination of H3+ has found a lot of attention due to its outstanding relevance for the chemistry of the interstellar medium (ISM) and its role as a benchmark for the treatment of dissociative recombination (DR) of polyatomic ions. We report DR measurements performed at the TSR storage ring utilizing a cryogenic ion trap injector. Furthermore, a chemical probing spectroscopy technique is described that allows for a very sensitive monitoring of the populated states inside the ion injector. Since H3+ exists in two different nuclear spin modifications, a controlled manipulation of the ortho/para fraction is needed in order to perform state-selective measurements.


arXiv: Atomic Physics | 2009

Spectroscopy and dissociative recombination of the lowest rotational states of H+3

Annemieke Petrignani; Holger Kreckel; Max H. Berg; S. Altevogt; Dennis Bing; H Buhr; M. Froese; M. Grieser; J. Hoffmann; Brandon Jordon-Thaden; Claude Krantz; Mario B. Mendes; Oldrich Novotný; Steffen Novotny; D. A. Orlov; S. Reinhardt; A. Wolf

The dissociative recombination of the lowest rotational states of H3+ has been investigated at the storage ring TSR using a cryogenic 22-pole radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15 K to the lowest rotational levels, (J, G)=(1,0) and (1,1), which belong to the ortho and para proton-spin symmetry, respectively. The rate coefficients and dissociation dynamics of H3+(J, G) populations produced with normal-and para-H2 were measured and compared to the rate and dynamics of a hot H3+ beam from a Penning source. The production of cold H3+ rotational populations was separately studied by rovibrational laser spectroscopy using chemical probing with argon around 55 K. First results indicate a ~20% relative increase of the para contribution when using para-H2 as parent gas. The H3+ rate coefficient observed for the para-H2 source gas, however, is quite similar to the H3+ rate for the normal-H2 source gas. The recombination dynamics confirm that for both source gases, only small populations of rotationally excited levels are present. The distribution of 3-body fragmentation geometries displays a broad part of various triangular shapes with an enhancement of ~12% for events with symmetric near-linear configurations. No large dependences on internal state or collision energy are found.

Collaboration


Dive into the Annemieke Petrignani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge