Annette Baudisch
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annette Baudisch.
Nature | 2014
Owen R. Jones; Alexander Scheuerlein; Roberto Salguero-Gómez; Carlo Giovanni Camarda; Ralf Schaible; Brenda B. Casper; Johan P. Dahlgren; Johan Ehrlén; María B. García; Eric S. Menges; Pedro F. Quintana-Ascencio; Hal Caswell; Annette Baudisch; James W. Vaupel
Evolution drives, and is driven by, demography. A genotype moulds its phenotype’s age patterns of mortality and fertility in an environment; these two patterns in turn determine the genotype’s fitness in that environment. Hence, to understand the evolution of ageing, age patterns of mortality and reproduction need to be compared for species across the tree of life. However, few studies have done so and only for a limited range of taxa. Here we contrast standardized patterns over age for 11 mammals, 12 other vertebrates, 10 invertebrates, 12 vascular plants and a green alga. Although it has been predicted that evolution should inevitably lead to increasing mortality and declining fertility with age after maturity, there is great variation among these species, including increasing, constant, decreasing, humped and bowed trajectories for both long- and short-lived species. This diversity challenges theoreticians to develop broader perspectives on the evolution of ageing and empiricists to study the demography of more species.
Journal of Ecology | 2015
Roberto Salguero-Gómez; Owen R. Jones; C. Ruth Archer; Yvonne M. Buckley; Judy Che‐Castaldo; Hal Caswell; David J. Hodgson; Alexander Scheuerlein; Dalia Amor Conde; Erik Brinks; Hendrik Buhr; Claudia Farack; Alexander Hartmann; Anne Henning; Gabriel Hoppe; Gesa Römer; Jens Runge; Tara Ruoff; Julia Wille; Stefan Zeh; Raziel Davison; Dirk Vieregg; Annette Baudisch; Res Altwegg; Fernando Colchero; Ming Dong; Hans de Kroon; Jean-Dominique Lebreton; Charlotte J. E. Metcalf; Maile M. Neel
Summary 1. Schedules of survival, growth and reproduction are key life-history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population
Proceedings of the National Academy of Sciences of the United States of America | 2012
Oskar Burger; Annette Baudisch; James W. Vaupel
Life expectancy is increasing in most countries and has exceeded 80 in several, as low-mortality nations continue to make progress in averting deaths. The health and economic implications of mortality reduction have been given substantial attention, but the observed malleability of human mortality has not been placed in a broad evolutionary context. We quantify the rate and amount of mortality reduction by comparing a variety of human populations to the evolved human mortality profile, here estimated as the average mortality pattern for ethnographically observed hunter-gatherers. We show that human mortality has decreased so substantially that the difference between hunter-gatherers and today’s lowest mortality populations is greater than the difference between hunter-gatherers and wild chimpanzees. The bulk of this mortality reduction has occurred since 1900 and has been experienced by only about 4 of the roughly 8,000 human generations that have ever lived. Moreover, mortality improvement in humans is on par with or greater than the reductions in mortality in other species achieved by laboratory selection experiments and endocrine pathway mutations. This observed plasticity in age-specific risk of death is at odds with conventional theories of aging.
Science | 2012
Annette Baudisch; James W. Vaupel
Why do patterns of aging differ widely across the tree of life? As people live longer, the question arises of how malleable aging is and whether it can be slowed or postponed. The classic evolutionary theories of aging (1—4) provide the theoretical framework that has guided aging research for 60 years. Are the theories consistent with recent evidence?
Proceedings of the National Academy of Sciences of the United States of America | 2016
Fernando Colchero; Roland Rau; Owen R. Jones; Julia A. Barthold; Dalia Amor Conde; Adam Lenart; László Németh; Alexander Scheuerlein; Jonas Schoeley; Catalina Torres; Virginia Zarulli; Jeanne Altmann; Diane K. Brockman; Anne M. Bronikowski; Linda M. Fedigan; Anne E. Pusey; Tara S. Stoinski; Karen B. Strier; Annette Baudisch; Susan C. Alberts; James W. Vaupel
Significance Public interest in social and economic equality is burgeoning. We examine a related phenomenon, lifespan equality, using data from charismatic primate populations and diverse human populations. Our study reveals three key findings. First, lifespan equality rises in lockstep with life expectancy, across primate species separated by millions of years of evolution and over hundreds of years of human social progress. Second, industrial humans differ more from nonindustrial humans in these measures than nonindustrial humans do from other primates. Third, in spite of the astonishing progress humans have made in lengthening the lifespan, a male disadvantage in lifespan measures has remained substantial—a result that will resonate with enduring public interest in male–female differences in many facets of life. The human lifespan has traversed a long evolutionary and historical path, from short-lived primate ancestors to contemporary Japan, Sweden, and other longevity frontrunners. Analyzing this trajectory is crucial for understanding biological and sociocultural processes that determine the span of life. Here we reveal a fundamental regularity. Two straight lines describe the joint rise of life expectancy and lifespan equality: one for primates and the second one over the full range of human experience from average lifespans as low as 2 y during mortality crises to more than 87 y for Japanese women today. Across the primate order and across human populations, the lives of females tend to be longer and less variable than the lives of males, suggesting deep evolutionary roots to the male disadvantage. Our findings cast fresh light on primate evolution and human history, opening directions for research on inequality, sociality, and aging.
PLOS ONE | 2012
Maciej J. Dańko; Jan Kozłowski; James W. Vaupel; Annette Baudisch
Is senescence the adaptive result of tradeoffs between younger and older ages or the nonadaptive burden of deleterious mutations that act at older ages? To shed new light on this unresolved question we combine adaptive and nonadaptive processes in a single model. Our model uses Pennas bit-strings to capture different age-specific mutational patterns. Each pattern represents a genotype and for each genotype we find the life history strategy that maximizes fitness. Genotypes compete with each other and are subject to selection and to new mutations over generations until equilibrium in gene-frequencies is reached. The mutation-selection equilibrium provides information about mutational load and the differential effects of mutations on a life history trait - the optimal age at maturity. We find that mutations accumulate only at ages with negligible impact on fitness and that mutation accumulation has very little effect on the optimal age at maturity. These results suggest that life histories are largely determined by adaptive processes. The non-adaptive process of mutation accumulation seems to be unimportant at evolutionarily relevant ages.
PLOS ONE | 2015
Tomasz F. Wrycza; Trifon I. Missov; Annette Baudisch
In Biodemography, aging is typically measured and compared based on aging rates. We argue that this approach may be misleading, because it confounds the time aspect with the mere change aspect of aging. To disentangle these aspects, here we utilize a time-standardized framework and, instead of aging rates, suggest the shape of aging as a novel and valuable alternative concept for comparative aging research. The concept of shape captures the direction and degree of change in the force of mortality over age, which—on a demographic level—reflects aging. We 1) provide a list of shape properties that are desirable from a theoretical perspective, 2) suggest several demographically meaningful and non-parametric candidate measures to quantify shape, and 3) evaluate performance of these measures based on the list of properties as well as based on an illustrative analysis of a simple dataset. The shape measures suggested here aim to provide a general means to classify aging patterns independent of any particular mortality model and independent of any species-specific time-scale. Thereby they support systematic comparative aging research across different species or between populations of the same species under different conditions and constitute an extension of the toolbox available to comparative research in Biodemography.
Gerontology | 2012
Annette Baudisch
Organisms of different species age differently. Current theory explains why life should get worse, i.e. why patterns of increasing risk of death should evolve. However, for some species the risk of death remains constant or even falls with advancing age. Evolutionary theory to explain the observed diversity of shapes of ageing is lacking. Theoretical models can provide insights into this diversity. Comparing assumptions of models that find increasing mortality patterns with models that find a variety of patterns, including constant and falling mortality over age, I identify conditions that licence constant or negative shapes of ageing. The results suggest that patterns of improvement and maintenance over age emerge when models potentially allow organisms to (1) escape the ‘damage ratchet’, (2) achieve maintenance and repair in parallel, (3) face increasing future reproductive potential and (4) incorporate flexible trade-offs. With these insights, theoretical models contribute to hypotheses about which species may follow life history strategies of negligible or negative ageing.
Journal of Theoretical Biology | 2014
Raziel Davison; Carol L. Boggs; Annette Baudisch
We investigate the effects of optimal time and resource allocation on age patterns of fertility and mortality for a model organism with (1) fixed maximum lifespan, (2) distinct juvenile and adult diets, and (3) reliance on nonrenewable resources for reproduction. We ask when it is optimal to tolerate starvation vs. conserve resources and then examine the effects of these decisions on adult mortality rates. We find that (1) age-related changes in tradeoffs partition the life cycle into as many as four discrete phases with different optimal behavior and mortality patterns, and (2) given a cost of reproduction, terminal investment can produce a signal of actuarial senescence. Also, given limitations imposed by non-replenishable resources, individuals beginning adult life with more replenishable resources do not necessarily live longer, since they can engage in capital breeding and need not defer reproduction to forage; low reproductive overheads and low costs of starvation also encourage capital breeding and may lead to earlier terminal investment and earlier senescence. We conclude that, even for species with qualitatively similar life histories, differences in physiological, behavioral and environmental tradeoffs or constraints may strongly influence optimal allocation schedules and produce variation in mortality patterns and life expectancy.
PLOS Computational Biology | 2013
Yann Le Cunff; Annette Baudisch; Khashayar Pakdaman
It is well established that individuals age differently. Yet the nature of these inter-individual differences is still largely unknown. For humans, two main hypotheses have been recently formulated: individuals may experience differences in aging rate or aging timing. This issue is central because it directly influences predictions for human lifespan and provides strong insights into the biological determinants of aging. In this article, we propose a model which lets population heterogeneity emerge from an evolutionary algorithm. We find that whether individuals differ in (i) aging rate or (ii) timing leads to different emerging population heterogeneity. Yet, in both cases, the same mortality patterns are observed at the population level. These patterns qualitatively reproduce those of yeasts, flies, worms and humans. Such findings, supported by an extensive parameter exploration, suggest that mortality patterns across species and their potential shapes belong to a limited and robust set of possible curves. In addition, we use our model to shed light on the notion of subpopulations, link population heterogeneity with the experimental results of stress induction experiments and provide predictions about the expected mortality patterns. As biology is moving towards the study of the distribution of individual-based measures, the model and framework we propose here paves the way for evolutionary interpretations of empirical and experimental data linking the individual level to the population level.