Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annette C. Vergunst is active.

Publication


Featured researches published by Annette C. Vergunst.


Molecular Microbiology | 2004

Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system.

Andree M. Hubber; Annette C. Vergunst; John T. Sullivan; Paul J. J. Hooykaas; Clive W. Ronson

The symbiosis island of Mesorhizobium loti strain R7A contains genes with strong similarity to the structural vir genes (virB1‐11; virD4) of Agrobacterium tumefaciens that encode the type IV secretion system (T4SS) required for T‐DNA transfer to plants. In contrast, M. loti strain MAFF303099 lacks these genes but contains genes not present in strain R7A that encode a type III secretion system (T3SS). Here we show by hybridization analysis that most M. loti strains contain the VirB/D4 T4SS and not the T3SS. Strikingly, strain R7A vir gene mutants formed large nodules containing bacteroids on Leucaena leucocephala in contrast to the wild‐type strain that formed only uninfected tumour‐like structures. A rhcJ T3SS mutant of strain MAFF303099 also nodulated L. leucocephala, unlike the wild type. On Lotus corniculatus, the vir mutants were delayed in nodulation and were less competitive compared with the wild type. Two strain R7A genes, msi059 and msi061, were identified through their mutant phenotypes as possibly encoding translocated effector proteins. Both Msi059 and Msi061 were translocated through the A. tumefaciens VirB/D4 system into Saccharomyces cerevisiae and Arabidopsis thaliana, as shown using the Cre recombinase Reporter Assay for Translocation (CRAfT). Taken together, these results suggest that the VirB/D4 T4SS of M. loti R7A plays an analogous symbiotic role to that of T3SS found in other rhizobia. The heterologous translocation of rhizobial proteins by the Agrobacterium VirB/D4 T4SS is the first demonstration that rhizobial effector proteins are translocated into plant cells and confirms functional conservation between the M. loti and A. tumefaciens T4SS.


Plant Molecular Biology | 1998

Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre

Annette C. Vergunst; Paul J. J. Hooykaas

The Cre/lox system was used to obtain targeted integration of an Agrobacterium T-DNA at a lox site in the genome of Arabidopsis thaliana. Site-specific recombinants, and not random events, were preferentially selected by activation of a silent lox-neomycin phosphotransferase (nptII) target gene. To analyse the effectiveness of Agrobacterium-mediated transfer we used T-DNA vectors harbouring a single lox sequence (this vector had to circularize at the T-DNA left- and right-border sequences prior to site-specific integration) or two lox sequences (this vector allowed circularization at the lox sequences within the T-DNA either prior to or after random integration, followed by targeting of the circularized vector), respectively. Furthermore, to control the reversibility of the integration reaction, Cre recombinase was provided transiently by using a cotransformation approach. One precise stable integrant was found amongst the recombinant calli obtained after transformation with a double-lox T-DNA vector. The results indicate that Agrobacterium-mediated transformation can be used as a tool to obtain site-specific integration.


Plant Physiology | 2003

Recognition of the Agrobacterium tumefaciens VirE2 Translocation Signal by the VirB/D4 Transport System Does Not Require VirE1

Annette C. Vergunst; Miranda C.M. van Lier; Amke den Dulk-Ras; Paul J. J. Hooykaas

Agrobacterium tumefaciens uses a type IV secretion system to deliver a nucleoprotein complex and effector proteins directly into plant cells. The single-stranded DNA-binding protein VirE2, the F-box protein VirF and VirE3 are delivered into host cells via this VirB/D4 encoded translocation system. VirE1 functions as a chaperone of VirE2 by regulating its efficient translation and preventing VirE2-VirE2 aggregation in the bacterial cell. We analyzed whether the VirE1 chaperone is also essential for transport recognition of VirE2 by the VirB/D4 encoded type IV secretion system. In addition, we assayed whether translocation of VirF and VirE3, which also forms part of the virE operon, is affected by the absence of VirE1. We employed the earlier developed CRAFT (Cre recombinase Reporter Assay For Translocation) assay to detect transfer of Cre::Vir fusion proteins from A. tumefaciens into plants, monitored by stable reconstitution of a kanamycin resistance marker, and into yeast, screened by loss of the URA3 gene. We show that the C-terminal 50 amino acids of VirE2 and VirE3 are sufficient to mediate Cre translocation into host cells, confirming earlier indications of a C-terminal transport signal. This transfer was independent of the presence or absence of VirE1. Besides, the translocation efficiency of VirF is not altered in a virE1 mutant. The results unambiguously show that the VirE1 chaperone is not essential for the recognition of the VirE2 transport signal by the transport system and the subsequent translocation across the bacterial envelope into host cells.


Plant Physiology | 2007

Stable Recombinase-Mediated Cassette Exchange in Arabidopsis Using Agrobacterium tumefaciens

Jeanine D. Louwerse; Miranda C.M. van Lier; Dirk M. van der Steen; Clementine M.T. de Vlaam; Paul J. J. Hooykaas; Annette C. Vergunst

Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation.


Chromosoma | 2000

Cre/lox-mediated recombination in Arabidopsis: evidence for transmission of a translocation and a deletion event.

Annette C. Vergunst; Lars E. T. Jansen; P.F. Fransz; J.H. de Jong; Paul J. J. Hooykaas

Abstract.Cre recombinase was used to mediate recombination between a chromosomally introduced loxP sequence in Arabidopsis thaliana (35S-lox-cre) and transferred DNA (T-DNA) originating from Agrobacterium tumefaciens (plox-npt), carrying a single loxP sequence. Constructs were designed for specific Cre-mediated recombination between the two lox sites, resulting in restoration of neomycin phosphotransferase (nptII) expression at the target locus. Kanamycin resistant (Kmr) recombinants were obtained with an efficiency of about 1% compared with random integration. Molecular analyses confirmed that these were indeed due to recombination between the lox sites of the target and introduced T-DNA. However, polymerase chain reaction analysis revealed that these reflected site-specific integration events only in a minority (4%). The other events were classified as translocations/inversions (71%) or deletions (25%), and were probably caused by site-specific recombination between a randomly integrated T-DNA and the original target locus. We studied some of these events in detail, including a Cre-mediated balanced translocation event, which was characterized by a combination of molecular, genetic and cytogenetic experiments (fluorescence in situ hybridization to spread pollen mother cells at meiotic prophase I). Our data clearly demonstrate that Agrobacterium-mediated transfer of a targeting T-DNA with a single lox site allows the isolation of multiple chromosomal rearrangements, including translocation and deletion events. Given that the complete sequence of the Arabidopsis genome will have been determined shortly this method has significant potential for applications in functional genomics.


Journal of Bacteriology | 2006

Agrobacterium rhizogenes GALLS Protein Contains Domains for ATP Binding, Nuclear Localization, and Type IV Secretion

Larry Hodges; Annette C. Vergunst; Jason Neal-McKinney; Amke den Dulk-Ras; Deborah M. Moyer; Paul J. J. Hooykaas; Walt Ream

Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.


Infection and Immunity | 2006

The Brucella suis Type IV Secretion System Assembles in the Cell Envelope of the Heterologous Host Agrobacterium tumefaciens and Increases IncQ Plasmid pLS1 Recipient Competence

Anna Carle; Christoph Höppner; Khaled Ahmed Aly; Qing Yuan; Amke den Dulk-Ras; Annette C. Vergunst; David O'Callaghan; Christian Baron

ABSTRACT Pathogenic Brucella species replicate within mammalian cells, and their type IV secretion system is essential for intracellular survival and replication. The options for biochemical studies on the Brucella secretion system are limited due to the rigidity of the cells and biosafety concerns, which preclude large-scale cell culture and fractionation. To overcome these problems, we heterologously expressed the Brucella suis virB operon in the closely related α2-proteobacterium Agrobacterium tumefaciens and showed that the VirB proteins assembled into a complex. Eight of the twelve VirB proteins were detected in the membranes of the heterologous host with specific antisera. Cross-linking indicated protein-protein interactions similar to those in other type IV secretion systems, and the results of immunofluorescence analysis supported the formation of VirB protein complexes in the cell envelope. Production of a subset of the B. suis VirB proteins (VirB3-VirB12) in A. tumefaciens strongly increased its ability to receive IncQ plasmid pLS1 in conjugation experiments, and production of VirB1 further enhanced the conjugation efficiency. Plasmid recipient competence correlated with periplasmic leakage and the detergent sensitivity of A. tumefaciens, suggesting a weakening of the cell envelope. Heterologous expression thus permits biochemical characterization of B. suis type IV secretion system assembly.


Archive | 2014

Host-Bacteria Interactions

Annette C. Vergunst; David O'Callaghan

The use of animal models is a key step to better understand bacterial virulence factors and their roles in host/pathogen interactions. To avoid the ethical and cost problems of mammalian models in bacterial virulence research, several insect models have been developed. One of these models, the larvae of the greater wax moth Galleria mellonella , has been shown to be relevant for several fungal and bacterial mammalian pathogens. Here, we describe the use G. mellonella to study virulence of the highly virulent facultative intracellular bacterial pathogens: Brucella suis, Brucella melitensis, Francisella tularensis, Burkholderia mallei , and Burkholderia pseudomallei.


Science | 2000

VirB/D4-dependent protein translocation from Agrobacterium into plant cells.

Annette C. Vergunst; Barbara Schrammeijer; Amke den Dulk-Ras; Clementine M.T. de Vlaam; Tonny J.G Regensburg-Tuı̈nk; Paul J. J. Hooykaas


Proceedings of the National Academy of Sciences of the United States of America | 2005

Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium

Annette C. Vergunst; Miranda C.M. van Lier; Amke den Dulk-Ras; Thomas A. Grosse Stüve; Anette Ouwehand; Paul J. J. Hooykaas

Collaboration


Dive into the Annette C. Vergunst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David O'Callaghan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars E. T. Jansen

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge