Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annette Dalrymple is active.

Publication


Featured researches published by Annette Dalrymple.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2014

A method for assessment of the genotoxicity of mainstream cigarette-smoke by use of the bacterial reverse-mutation assay and an aerosol-based exposure system.

Joanne Kilford; David Thorne; Rebecca Payne; Annette Dalrymple; Julie Clements; Clive Meredith; Debbie Dillon

To date there are no widely accepted methods for the toxicological testing of complex gaseous mixtures and aerosols, such as cigarette smoke, although some modifications to the standard regulatory methods have been developed and used. Historically, routine testing of cigarettes has primarily focused on the particulate fraction of cigarette smoke. However, this fraction may not accurately reflect the full toxicity and mutagenicity of the smoke aerosol as a whole, which contains semi-volatiles and short-lived products of combustion. In this study we have used a modified version of the bacterial reverse-mutation (Ames) assay for the testing of mainstream smoke generated from 3R4F reference cigarettes with a Vitrocell(®) VC 10 exposure system. This method has been evaluated in four strains of Salmonella typhimurium (TA98, TA100, YG1024 and YG1042) and one strain of Escherichia coli (WP2 uvrA pKM101) in the absence and presence of a metabolic activation system. Following exposure at four concentrations of diluted mainstream cigarette-smoke, concentration-related and reproducible increases in the number of revertants were observed in all four Salmonella strains. E. coli strain WP2 uvrA pKM101 was unresponsive at the four concentrations tested. To quantify the exposure dose and to enable biological response to be plotted as a function of deposited mass, quartz-crystal microbalances were included in situ in the smoke-exposure set-up. This methodology was further assessed by comparing the responses of strain YG1042 to mainstream cigarette-smoke on a second VC 10 Smoking Robot. In summary, the Ames assay can be successfully modified to assess the toxicological impact of mainstream cigarette-smoke.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2015

The mutagenic assessment of mainstream cigarette smoke using the Ames assay: A multi-strain approach

David Thorne; Joanne Kilford; Michael Hollings; Annette Dalrymple; Mark Ballantyne; Clive Meredith; Deborah Dillon

Salmonella typhimurium strains TA1535, TA1537, TA97, TA102 and TA104 were assessed for their suitability and use in conjunction with a Vitrocell(®) VC 10 Smoking Robot and 3R4F reference mainstream cigarette smoke. Little information exists on TA97, TA104, TA1535, TA1537 and TA102 using an aerosol 35mm spread-plate format. In this study, TA1535 and TA1537 were considered sub-optimal for use with a scaled-down format, due to low spontaneous revertant numbers (0-5 revertants/plate). In the context of a regulatory environment, TA97 is deemed an acceptable alternative for TA1537 and was therefore selected for whole smoke exposure in this study. However, there is no acceptable alternative for TA1535, therefore this strain was included for whole smoke exposure. TA1535, TA97, TA102 and TA104 were assessed for mutagenic responses following exposure to cigarette smoke at varying concentrations (using diluting airflow rates of 1.0, 4.0, 8.0 and 12.0L/min), and exposure times of 24 and 64min. A positive mutagenic response to cigarette smoke was observed in strain TA104 at both the 24 and 64min time points, in the presence of S-9, at the highest smoke concentration tested (1.0L/min diluting airflow). The three remaining strains were found to be unresponsive to cigarette smoke at all concentrations tested, in the presence and absence of metabolic activation. Cigarette smoke particulate deposition was quantified in situ of exposure using quartz crystal microbalance technology, enabling data to be presented against an associated gravimetric mass (μg/cm(2)). Finally, data obtained in this study were combined with previously published Ames data for TA98, TA100, YG1024, YG1042 and Escherichia coli (WP2 uvrA pKM101), generated using the same 35mm methodology. The combined data-set was used to propose an aerosol testing strategy, based on strain compatibility with the whole smoke aerosol, whilst maintaining the essence of the regulatory guidelines for the standard Ames assay.


Regulatory Toxicology and Pharmacology | 2015

The combination of two novel tobacco blends and filter technologies to reduce the in vitro genotoxicity and cytotoxicity of prototype cigarettes

Ian Crooks; Ken Scott; Annette Dalrymple; Debbie Dillon; Clive Meredith

Tobacco smoke from a combustible cigarette contains more than 6000 constituents; approximately 150 of these are identified as toxicants. Technologies that modify the tobacco blend to reduce toxicant emissions have been developed. These include tobacco sheet substitute to dilute toxicants in smoke and blend treated tobacco to reduce the levels of nitrogenous precursors and some polyphenols. Filter additives to reduce gas (vapour) phase constituents have also been developed. In this study, both tobacco blend and filter technologies were combined into an experimental cigarette and smoked to International Organisation on Standardisation and Health Canada puffing parameters. The resulting particulate matter was subjected to a battery of in vitro genotoxicity and cytotoxicity assays - the Ames test, mouse lymphoma assay, the in vitro micronucleus test and the Neutral Red Uptake assay. The results indicate that cigarettes containing toxicant reducing technologies may be developed without observing new additional genotoxic hazards as assessed by the assays specified. In addition, reductions in bacterial mutagenicity and mammalian genotoxicity of the experimental cigarette were observed relative to the control cigarettes. There were no significant differences in cytotoxicity relative to the control cigarettes.


Inhalation Toxicology | 2015

A comparative assessment of cigarette smoke aerosols using an in vitro air–liquid interface cytotoxicity test

David Thorne; Annette Dalrymple; Deborah Dillon; Martin Graham Duke; Clive Meredith

Abstract This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products.


Regulatory Toxicology and Pharmacology | 2015

An improved method for the isolation of rat alveolar type II lung cells: Use in the Comet assay to determine DNA damage induced by cigarette smoke

Annette Dalrymple; Patricia Ordoñez; David Thorne; Debbie Dillon; Clive Meredith

Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2018

Extreme testing of undiluted e-cigarette aerosol in vitro using an Ames air-agar-interface technique

David Thorne; M. Hollings; A. Seymour; Jason Adamson; Annette Dalrymple; Mark Ballantyne; Marianna Gaça

There is a growing consensus that e-cigarettes hold the potential for reducing the harm associated with cigarette smoking. Recently published studies have reported in vitro testing of e-cigarettes, demonstrating reduced toxicological and biological effects. Few studies however have reported the use of e-cigarettes under extreme testing conditions. To assess the full mutagenic potential of a commercially available electronic-cigarette (Vype ePen), this study investigated the delivery of aerosol under extreme conditions, using a scaled-down 35 mm plate Ames bacterial reverse mutagenicity assay. S. typhimurium strains TA98, TA100, TA97, TA104 and E. coli WP2 uvrA pKM101 with or without metabolic activation (S9), were employed. Using a modified Vitrocell VC 10 exposure system 0, 180, 360, 540, 720 or 900 puffs of undiluted e-cigarette aerosol was generated and delivered to bacterial cultures aligned to reported human consumption data. The results demonstrate that no mutagenic activity was observed in any strain under any test condition even when exposed to 900 puffs of undiluted e-cigarette aerosols +/- S9. Positive control responses were observed in all strains +/- S9. Nicotine assessments demonstrated an increased and consistent aerosol delivery, with calculated maximum doses of ∼1 mg/mL delivery of nicotine. These data demonstrate the validity of this unique testing approach and adds further information to the growing weight of evidence that e-cigarettes offer substantially reduced exposure when compared to conventional cigarette smoke. For future in vitro assessments of next generation tobacco and nicotine products, the generation, delivery and testing of undiluted aerosols can now be considered.


Inhalation Toxicology | 2016

Cigarette smoke induced genotoxicity and respiratory tract pathology: evidence to support reduced exposure time and animal numbers in tobacco product testing

Annette Dalrymple; Patricia Ordoñez; David Thorne; David Walker; Oscar M. Camacho; Ansgar Büttner; Debbie Dillon; Clive Meredith

Abstract Many laboratories are working to develop in vitro models that will replace in vivo tests, but occasionally there remains a regulatory expectation of some in vivo testing. Historically, cigarettes have been tested in vivo for 90 days. Recently, methods to reduce and refine animal use have been explored. This study investigated the potential of reducing animal cigarette smoke (CS) exposure to 3 or 6 weeks, and the feasibility of separate lung lobes for histopathology or the Comet assay. Rats were exposed to sham air or CS (1 or 2 h) for 3 or 6 weeks. Respiratory tissues were processed for histopathological evaluation, and Alveolar type II cells (AEC II) isolated for the Comet assay. Blood was collected for Pig-a and micronucleus quantification. Histopathological analyses demonstrated exposure effects, which were generally dependent on CS dose (1 or 2 h, 5 days/week). Comet analysis identified that DNA damage increased in AEC II following 3 or 6 weeks CS exposure, and the level at 6 weeks was higher than 3 weeks. Pig-a mutation or micronucleus levels were not increased. In conclusion, this study showed that 3 weeks of CS exposure was sufficient to observe respiratory tract pathology and DNA damage in isolated AEC II. Differences between the 3 and 6 week data imply that DNA damage in the lung is cumulative. Reducing exposure time, plus analyzing separate lung lobes for DNA damage or histopathology, supports a strategy to reduce and refine animal use in tobacco product testing and is aligned to the 3Rs (replacement, reduction and refinement).


Chemistry Central Journal | 2013

Assessment of cigarette smoke particle deposition within the Vitrocell® exposure module using quartz crystal microbalances

Jason Adamson; David Thorne; Annette Dalrymple; Debbie Dillon; Clive Meredith


BMC Research Notes | 2014

Development of a BALB/c 3T3 neutral red uptake cytotoxicity test using a mainstream cigarette smoke exposure system

David Thorne; Joanne Kilford; Rebecca Payne; Linsey Haswell; Annette Dalrymple; Clive Meredith; Deborah Dillon


Toxicology Letters | 2017

In vitro assessment of a novel prototype e-cigarette

Annette Dalrymple; Tomasz Jaunky; Anya Terry Terry; Stela Bozhilova; Andy Baxter; Jason Adamson; Katherine Hewitt; Mark Taylor; Tony Carr; Marianna Gaça

Collaboration


Dive into the Annette Dalrymple's collaboration.

Top Co-Authors

Avatar

David Thorne

British American Tobacco

View shared research outputs
Top Co-Authors

Avatar

Debbie Dillon

British American Tobacco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Adamson

British American Tobacco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah Dillon

British American Tobacco

View shared research outputs
Top Co-Authors

Avatar

Ken Scott

British American Tobacco

View shared research outputs
Top Co-Authors

Avatar

Marianna Gaça

British American Tobacco

View shared research outputs
Researchain Logo
Decentralizing Knowledge