Annette Granéli
University of Gothenburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annette Granéli.
Journal of Optics | 2007
Emma Eriksson; Jan Scrimgeour; Annette Granéli; Kerstin Ramser; Rikard Wellander; Jonas Enger; Dag Hanstorp; Mattias Goksör
Most research on optical manipulation aims towards investigation and development of the system itself. In this paper we show how optical manipulation, imaging and microfluidics can be combined for investigations of single cells. Microfluidic systems have been fabricated and are used, in combination with optical tweezers, to enable environmental changes for single cells. The environment within the microfluidic system has been modelled to ensure control of the process. Three biological model systems have been studied with different combinations of optical manipulation, imaging techniques and microfluidics. In Saccharomyces cerevisiae, environmentally induced size modulations and spatial localization of proteins have been studied to elucidate various signalling pathways. In a similar manner the oxygenation cycle of single red blood cells was triggered and mapped using Raman spectroscopy. In the third experiment the forces between the endoplasmic reticulum and chloroplasts were studied in Pisum sativum and Arabidopsis thaliana. By combining different techniques we make advanced biological research possible, revealing information on a cellular level that is impossible to obtain with traditional techniques.
Toxicology and Applied Pharmacology | 2011
Carl Simonsson; Jakob Torp Madsen; Annette Granéli; Klaus Ejner Andersen; Ann-Therese Karlberg; Charlotte A Jonsson; Marica B. Ericson
The growing focus on nanotechnology and the increased use of nano-sized structures, e.g. vesicles, in topical formulations has led to safety concerns. We have investigated the sensitizing capacity and penetration properties of a fluorescent model compound, rhodamine B isothiocyanate (RBITC), when administered in micro- and nano-scale vesicle formulations. The sensitizing capacity of RBITC was studied using the murine local lymph node assay (LLNA) and the skin penetration properties were compared using diffusion cells in combination with two-photon microscopy (TPM). The lymph node cell proliferation, an indicator of a compounds sensitizing capacity, increased when RBITC was applied in lipid vesicles as compared to an ethanol:water (Et:W) solution. Micro-scale vesicles showed a slightly higher cell proliferative response compared to nano-scale vesicles. TPM imaging revealed that the vesicle formulations improved the skin penetration of RBITC compared to the Et:W solution. A strong fluorescent region in the stratum corneum and upper epidermis implies elevated association of RBITC to these skin layers when formulated in lipid vesicles. In conclusion, the results indicate that there could be an elevated risk of sensitization when haptens are delivered in vehicles containing lipid vesicles. Although the size of the vesicles seems to be of minor importance, further studies are needed before a more generalized conclusion can be drawn. It is likely that the enhanced sensitizing capacity is a consequence of the improved penetration and increased formation of hapten-protein complexes in epidermis when RBITC is delivered in ethosomal formulations.
Biomicrofluidics | 2015
Camilla Freitag; Charleston Noble; Joachim Fritzsche; Fredrik Persson; Michaela Reiter-Schad; Adam N. Nilsson; Annette Granéli; Tobias Ambjörnsson; K. U. Mir; Jonas O. Tegenfeldt
The contiguity and phase of sequence information are intrinsic to obtain complete understanding of the genome and its relationship to phenotype. We report the fabrication and application of a novel nanochannel design that folds megabase lengths of genomic DNA into a systematic back-and-forth meandering path. Such meandering nanochannels enabled us to visualize the complete 5.7 Mbp (1 mm) stained DNA length of a Schizosaccharomyces pombe chromosome in a single frame of a CCD. We were able to hold the DNA in situ while implementing partial denaturation to obtain a barcode pattern that we could match to a reference map using the Poland-Scheraga model for DNA melting. The facility to compose such long linear lengths of genomic DNA in one field of view enabled us to directly visualize a repeat motif, count the repeat unit number, and chart its location in the genome by reference to unique barcode motifs found at measurable distances from the repeat. Meandering nanochannel dimensions can easily be tailored to human chromosome scales, which would enable the whole genome to be visualized in seconds.
Methods of Molecular Biology | 2010
Annette Granéli
Surface analytical tools as surface plasmon resonance (SPR) have become increasingly important in biomedical research since they offer high detection sensitivity compared to traditional biomedical methods. For the use of SPR as a biomedical research tool there is a need to immobilize the reactants to a solid sensor surface. It is nowadays fairly straightforward to immobilize various reactants and hydrophilic proteins to a solid sensor surface and SPR has successfully been used in several applications using such proteins when studying various protein interactions. When using SPR for the analysis of transmembrane proteins the immobilization onto the solid surface becomes more difficult. Transmembrane proteins are more sensitive to the surroundings and need to be incorporated into a structure where it can reside in a natural environment. Supported liposomes offer such environment. In this chapter a new method is presented where multilayers of such supported liposomes are used to immobilize transmembrane proteins onto a solid sensor surface which is suitable for use in SPR detection.
Analytical Biochemistry | 2013
Karolin Frykholm; Camilla Freitag; Fredrik Persson; Jonas O. Tegenfeldt; Annette Granéli
Low throughput is an inherent problem associated with most single-molecule biophysical techniques. We have developed a versatile tool for high-throughput analysis of DNA and DNA-binding molecules by combining microfluidic and dense DNA arrays. We use an easy-to-process microfluidic flow channel system in which dense DNA arrays are prepared for simultaneous imaging of large amounts of DNA molecules with single-molecule resolution. The Y-shaped microfluidic design, where the two inlet channels can be controlled separately and precisely, enables the creation of a concentration gradient across the microfluidic channel as well as rapid and repeated addition and removal of substances from the measurement region. A DNA array stained with the fluorescent DNA-binding dye YOYO-1 in a gradient manner illustrates the method and serves as a proof of concept. We have applied the method to studies of the repair protein Rad51 and could directly probe the concentration-dependent DNA-binding behavior of human Rad51 (HsRad51). In the low-concentration regime used (100 nM HsRad51 and below), we detected binding to double-stranded DNA (dsDNA) without positive cooperativity.
Proceedings of SPIE | 2006
Annette Granéli; Emma Eriksson; Jonas Enger; Kerstin Ramser; Mattias Goksör; Stefan Hohmann; Dag Hanstorp
In recent years there has been a growing interest in the use of optical manipulation techniques, such as optical tweezers, in biological research as the full potential of such applications are being realized. Biological research is developing towards the study of single entities to reveal new behaviors that cannot be discovered with more traditional ensemble techniques. To be able to study single cells we have developed a new method where a combination of micro-fluidics and optical tweezers was used. Micro-fluidic channels were fabricated using soft lithography. The channels consisted of a Y-shaped junction were two channels merged into one. By flowing different media in the two channels in laminar flow we were able to create a sharp concentration gradient at the junction. Single cells were trapped by the tweezers and the micro-fluidic system allowed fast environmental changes to be made for the cell in a reversible manner. The time required to change the surroundings of the cell was limited to how sharp mixing region the system could create, thus how far the cells had to be moved using the optical tweezers. With this new technique cellular response in single cells upon fast environmental changes could be investigated in real time. The cellular response was detected by monitoring variations in the cell by following the localization of fluorescently tagged proteins within the cell.
Langmuir | 2006
Annette Granéli; Caitlyn C. Yeykal; Tekkatte Krishnamurthy Prasad; Eric C. Greene
Langmuir | 2003
Annette Granéli; Jan Rydström; Bengt Kasemo; Fredrik Höök
Lab on a Chip | 2010
Emma Eriksson; Kristin Sott; Fredrik Lundqvist; Martin Sveningsson; Jan Scrimgeour; Dag Hanstorp; Mattias Goksör; Annette Granéli
ChemPhysChem | 2004
Annette Granéli; Malin Edvardsson; Fredrik Höök