Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annette K. Kleppe is active.

Publication


Featured researches published by Annette K. Kleppe.


Nature | 2002

Questioning the evidence for Earth's oldest fossils.

Martin D. Brasier; Owen R. Green; Andrew P. Jephcoat; Annette K. Kleppe; Martin J. Van Kranendonk; John F. Lindsay; Andrew Steele; Nathalie V. Grassineau

Structures resembling remarkably preserved bacterial and cyanobacterial microfossils from ∼3,465-million-year-old Apex cherts of the Warrawoona Group in Western Australia currently provide the oldest morphological evidence for life on Earth and have been taken to support an early beginning for oxygen-producing photosynthesis. Eleven species of filamentous prokaryote, distinguished by shape and geometry, have been put forward as meeting the criteria required of authentic Archaean microfossils, and contrast with other microfossils dismissed as either unreliable or unreproducible. These structures are nearly a billion years older than putative cyanobacterial biomarkers, genomic arguments for cyanobacteria, an oxygenic atmosphere and any comparably diverse suite of microfossils. Here we report new research on the type and re-collected material, involving mapping, optical and electron microscopy, digital image analysis, micro-Raman spectroscopy and other geochemical techniques. We reinterpret the purported microfossil-like structure as secondary artefacts formed from amorphous graphite within multiple generations of metalliferous hydrothermal vein chert and volcanic glass. Although there is no support for primary biological morphology, a Fischer–Tropsch-type synthesis of carbon compounds and carbon isotopic fractionation is inferred for one of the oldest known hydrothermal systems on Earth.


Nature Communications | 2014

Correlated defect nanoregions in a metal–organic framework

Matthew J. Cliffe; Wei Wan; Xiaodong Zou; Philip A. Chater; Annette K. Kleppe; Matthew G. Tucker; H. Wilhelm; Nicholas P. Funnell; François-Xavier Coudert; Andrew L. Goodwin

Throughout much of condensed matter science, correlated disorder is key to material function. While structural and compositional defects are known to exist within a variety of metal–organic frameworks, the prevailing understanding is that these defects are only ever included in a random manner. Here we show—using a combination of diffuse scattering, electron microscopy, anomalous X-ray scattering, and pair distribution function measurements—that correlations between defects can in fact be introduced and controlled within a hafnium terephthalate metal–organic framework. The nanoscale defect structures that emerge are an analogue of correlated Schottky vacancies in rocksalt-structured transition metal monoxides and have implications for storage, transport, optical and mechanical responses. Our results suggest how the diffraction behaviour of some metal–organic frameworks might be reinterpreted, and establish a strategy of exploiting correlated nanoscale disorder as a targetable and desirable motif in metal–organic framework design.


Mineralogical Magazine | 2004

High-pressure Raman spectroscopic studies of FeS2 pyrite

Annette K. Kleppe; Andrew P. Jephcoat

Abstract We report micro-Raman spectroscopic studies of FeS2 pyrite in the diamond-anvil cell under hydrostatic and non-hydrostatic conditions to 55 GPa at room temperature. Four out of five Raman-active modes are resolved with helium as a pressure-transmitting medium to highest pressures. The fifth mode, Tg(2) [377 cm-1], is weak and unresolved lying ~2 cm-1 from the intense Ag mode [379 cm-1] at 1 bar. We observe an increase in the separation of the Eg [344 cm-1] and Tg(1) [350 cm-1] modes under compression. All observed frequencies increase continuously with increasing pressure showing no evidence for a structural phase transition in accord with both X-ray diffraction and shock-wave studies. The Ag and Tg(1) modes gain significantly in intensity relative to the Eg mode with increasing pressure probably resulting from Raman resonance effects. The Tg(3) mode [430 cm-1] broadens unusually compared to the other pyrite modes with pressure. The Raman data are consistent with a contraction of the S-S and Fe-S bonds under pressure. The main effect of non-hydrostatic conditions on the Raman modes is a strong pressure-induced broadening; the pressure-dependence of the frequencies and relative intensities are not affected within the error of the measurements.


American Mineralogist | 2003

The effect of pressure upon hydrogen bonding in chlorite: A Raman spectroscopic study of clinochlore to 26.5 GPa

Annette K. Kleppe; Andrew P. Jephcoat; Mark D. Welch

Abstract The effect of pressure upon hydrogen bonding in synthetic end-member clinochlore, (Mg5Al)(Si3Al)O10(OH)8, has been studied in situ by high-pressure micro-Raman spectroscopy in a moissanite-anvil cell to 26.5 GPa at 300 K. The ambient spectrum consists of three OH-stretching bands between 3400 and 3650 cm-1, attributed to the hydrogen-bonded interlayer OH, and a narrow band at 3679 cm-1 that is assigned to the non-hydrogen-bonded OH groups of the talc-like 2:1 layer. The pressure dependence of the OH modes is linear up to 6 GPa. Near 9 GPa a major discontinuity occurs in the pressure dependence of the interlayer OH-stretching modes. It involves frequency increases >100 cm-1 that indicate major changes in hydrogen bonding. The OH mode of the 2:1 layer does not show discontinuous behavior at 9 GPa. A further discontinuity occurs at ~16 GPa. This discontinuity affects both interlayer and 2:1 OH, and is likely to be associated with a change in the overall compression mechanism of clinochlore. The spectroscopic behavior is a completely reversible function of pressure. Predictions based upon recent high-pressure diffraction studies of hydrogen bonding and compression of clinochlore suggest that the 9 GPa transition is associated with attainment of an O2--O2--contact distance of 2.7 Å.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structure of sodium above 100 GPa by single-crystal x-ray diffraction

M. I. McMahon; Eugene Gregoryanz; L. F. Lundegaard; I. Loa; Christophe L. Guillaume; R. J. Nelmes; Annette K. Kleppe; M. Amboage; H. Wilhelm; A. P. Jephcoat

At pressures above a megabar (100 GPa), sodium crystallizes in a number of complex crystal structures with unusually low melting temperatures, reaching as low as 300 K at 118 GPa. We have utilized this unique behavior at extreme pressures to grow a single crystal of sodium at 108 GPa, and have investigated the complex crystal structure at this pressure using high-intensity x-rays from the new Diamond synchrotron source, in combination with a pressure cell with wide angular apertures. We confirm that, at 108 GPa, sodium is isostructural with the cI16 phase of lithium, and we have refined the full crystal structure of this phase. The results demonstrate the extension of single-crystal structure refinement beyond 100 GPa and raise the prospect of successfully determining the structures of yet more complex phases reported in sodium and other elements at extreme pressures.


Physics and Chemistry of Minerals | 2001

Raman observations of the OH stretching region in hydrous wadsleyite (b-Mg2SiO4) to 50 GPa

Annette K. Kleppe; Andrew P. Jephcoat; H Olijnyk; Ae Slesinger; Simon C. Kohn; Bernard J. Wood

Abstract Raman spectra of hydrous β-Mg2SiO4 (1.65 wt% H2O) have been measured in a diamond-anvil cell with helium as a pressure-transmitting medium at room temperature to 50 GPa. We observe three OH-stretching modes, a doublet with components at 3329 and 3373 cm−1, which decrease linearly with pressure, and a single mode at 3586 cm−1, which remains nearly constant up to 24 GPa before decreasing at higher pressures. Assessment of the mode frequencies and their pressure dependence, together with previous results from X-ray and IR data, are consistent with protonation of the O1 site in agreement with previous studies. Strict assignment of Raman activity awaits detailed structural models. The nature of the protonation in wadsleyite may require more specific experimental probes for full solution of the hydrogen-site problem.


Angewandte Chemie | 2013

Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process.

José L. Jordá; Fernando Rey; German Sastre; Susana Valencia; Miguel Palomino; Avelino Corma; A. Segura; D. Errandonea; Raúl Lacomba; F. J. Manjón; O. Gomis; Annette K. Kleppe; Andrew P. Jephcoat; Mónica Amboage; J. Alberto Rodríguez-Velamazán

The first pressure-induced solid-phase synthesis of a zeolite has been found through compression of a common zeolite, ITQ-29 (see scheme, Si yellow, O red). The new microporous structure, ITQ-50, has a unique structure and improved performance for propene/propane separation with respect the parent material ITQ-29.


American Mineralogist | 2004

Novel high-pressure behavior in chlorite: A synchrotron XRD study of clinochlore to 27 GPa

Mark D. Welch; Annette K. Kleppe; Andrew P. Jephcoat

Abstract The high-pressure behavior of synthetic end-member IIb clinochlore, Mg5Al(Si3Al)O10(OH)8, has been studied by synchrotron X-ray powder diffraction to 27 GPa at 300 K. A non-quenchable, reversible transformation occurs between 9 and 10 GPa that is dominated by compression normal to the structural layering and has an associated small but significant shear of the β angle from 97.2 to 96.3°. The high-pressure chlorite is more compressible than the low-pressure phase. Diffraction patterns of the high-pressure chlorite are very similar from 10 to 27 GPa, indicating that it persists stably with no significant change in β to very high pressures: β is effectively locked at the transformation to the high-pressure structure. It is proposed that the transformation is not polytypic and that the distortion reflects reorganization of the interlayer hydrogen bonding, possibly involving novel proton behavior as adjacent sheets of cations of the brucite-like and tetrahedral layers close down on the sheet of interlayer protons. The transformation is likely driven by O atom close-packing requirements imposed by pressure.


Nature Communications | 2016

Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal

Nicola Casati; Annette K. Kleppe; Andrew P. Jephcoat; Piero Macchi

When pressure is applied, the molecules inside a crystal undergo significant changes of their stereoelectronic properties. The most interesting are those enhancing the reactivity of systems that would be otherwise rather inert at ambient conditions. Before a reaction can occur, however, a molecule must be activated, which means destabilized. In aromatic compounds, molecular stability originates from the resonance between two electronic configurations. Here we show how the resonance energy can be decreased in molecular crystals on application of pressure. The focus is on syn-1,6:8,13-Biscarbonyl[14]annulene, an aromatic compound at ambient conditions that gradually localizes one of the resonant configurations on compression. This phenomenon is evident from the molecular geometries measured at several pressures and from the experimentally determined electron density distribution at 7.7 GPa; the observations presented in this work are validated by periodic DFT calculations.


Mineralogical Magazine | 2012

Phase transitions in hydroxide perovskites: A Raman spectroscopic study of stottite, FeGe(OH) 6, to 21 GPa

Annette K. Kleppe; Mark D. Welch; Wilson A. Crichton; Andrew P. Jephcoat

Abstract The effect of pressure on the naturally occurring hydroxide-perovskite stottite, FeGe(OH)6, has been studied in situ by micro-Raman spectroscopy to 21 GPa at 300 K. The ambient spectrum contains six OH-stretching bands in the range 3064−3352 cm−1. The presence of six non-equivalent OH groups is inconsistent with space group P42/n. In view of this inconsistency a new ambient structure determination of stottite from Tsumeb was carried out, but this did not allow the clear rejection of P42/n symmetry. However, a successful refinement was also carried out in space group P2/n, a subgroup of P42/n, which allows for six non-equivalent O atoms. The two refinements are of comparable quality and do not allow a choice to be made based purely on the X-ray data. However, taken with the ambient and 150 K Raman spectra, a good case can be made for stottite having P2/n symmetry at ambient conditions. On this basis, the pressure induced spectroscopic changes are interpreted in terms of a reversible phase transition P2/n ↔ P42/n.

Collaboration


Dive into the Annette K. Kleppe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Welch

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph R. Smyth

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. S. Rumsey

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Matthew G. Tucker

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge