Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anni Christensen is active.

Publication


Featured researches published by Anni Christensen.


Thrombosis and Haemostasis | 2004

Plasminogen activator inhibitor-1 and tumour growth, invasion, and metastasis

Michelle K.V. Durand; Julie Støve Bødker; Anni Christensen; Daniel M. Dupont; Martin Hansen; Jan K. Jensen; Signe Kjelgaard; Lisa Mathiasen; Katrine E. Pedersen; Sune Skeldal; Troels Wind; Peter A. Andreasen

In recent decades, evidence has been accumulating showing the important role of urokinase-type plasminogen activator (uPA) in growth, invasion, and metastasis of malignant tumours. The evidence comes from results with animal tumour models and from the observation that a high level of uPA in human tumours is associated with a poor patient prognosis. It therefore initially came as a surprise that a high tumour level of the uPA inhibitor plasminogen activator inhibitor-1 (PAI-1) is also associated with a poor prognosis, the PAI-1 level in fact being one of the most informative biochemical prognostic markers. We review here recent investigations into the possible tumour biological role of PAI-1, performed by animal tumour models, histological examination of human tumours, and new knowledge about the molecular interactions of PAI-1 possibly underlying its tumour biological functions. The exact tumour biological functions of PAI-1 remain uncertain but PAI-1 seems to be multifunctional as PAI-1 is expressed by multiple cell types and has multiple molecular interactions. The potential utilisation of PAI-1 as a target for anti-cancer therapy depends on further mapping of these functions.


FEBS Letters | 1994

Very low density lipoprotein receptor from mammary gland and mammary epithelial cell lines binds and mediates endocytosis of M(r) 40,000 receptor associated protein.

Anna Carina Wiborg Simonsen; Christian W. Heegaard; Lone K. Rasmussen; Lars Ellgaard; Lars Kjøller; Anni Christensen; Michael Etzerodt; Peter A. Andreasen

We here report that the M r 40,000 receptor associated protein (RAP), previously found to bind to α2‐macroglobulin receptor/low density lipoprotein receptor related protein (α2MR/LRP) and glycoprotein 330 (gp330), binds to an M r, 105,000 membrane protein from bovine mammary gland, human mamma tumors and mammary epithelial cell lines. We have purified this protein from bovine and human sources. N‐terminal amino acid sequencing and immunoblotting analyses showed that the protein was identical or closely related to very low density lipoprotein receptor (VLDL‐R). Experiments with the human mamma carcinoma cell line MCF‐7 showed that this receptor was able to mediate an efficient endocytosis of RAP. These novel findings strongly suggest that RAP functions as a modulator of ligand binding to VLDL‐R, similarly to α2MR/LRP and gp330.


Biochimica et Biophysica Acta | 2003

Vitronectin in human breast carcinomas.

Mads Aaboe; Birgitte Vrou Offersen; Anni Christensen; Peter A. Andreasen

We have analysed the occurrence of the extracellular glycoprotein vitronectin in carcinomas and normal tissue of human breast. Immunohistochemical analysis of carcinomas revealed a strong vitronectin accumulation in extracellular matrix (ECM) around some cancer cell clusters and in the subendothelial area of some blood vessels. In normal tissue, vitronectin had a homogeneous periductal occurrence, with local accumulation much lower than that in the carcinomas. Using a new solid phase radioligand assay, the vitronectin concentrations of extracts of carcinomas and normal breast tissue were determined and found to be indistinguishable. Comparison of the vitronectin and the hemoglobin concentrations of the extracts showed that their vitronectin content was not derived from blood contamination. Vitronectin mRNA was undetectable in both carcinomas and normal tissue. We conclude that vitronectin is not synthesised locally in breast tissue but derived by leakage from vessels, followed by extracellular accumulation in patterns distinctly different in carcinomas and normal tissue. The observation of a high vitronectin content in the carcinomas and its localisation in the tissue contributes to the clarification of the role of vitronectin in tumour biology in interaction with the plasminogen activation system and integrins.


Journal of Biological Chemistry | 2005

A Urokinase-type Plasminogen Activator-inhibiting Cyclic Peptide with an Unusual P2 Residue and an Extended Protease Binding Surface Demonstrates New Modalities for Enzyme Inhibition

Martin Hansen; Troels Wind; Grant E. Blouse; Anni Christensen; Helle H. Petersen; Signe Kjelgaard; Lisa Mathiasen; Thor Las Holtet; Peter A. Andreasen

To find new principles for inhibiting serine proteases, we screened phage-displayed random peptide repertoires with urokinase-type plasminogen activator (uPA) as the target. The most frequent of the isolated phage clones contained the disulfide bridge-constrained sequence CSWRGLENHRMC, which we designated upain-1. When expressed recombinantly with a protein fusion partner, upain-1 inhibited the enzymatic activity of uPA competitively with a temperature and pH-dependent Ki, which at 25 °C and pH 7.4 was ∼500 nm. At the same conditions, the equilibrium dissociation constant KD, monitored by displacement of p-aminobenzamidine from the specificity pocket of uPA, was ∼400 nm. By an inhibitory screen against other serine proteases, including trypsin, upain-1 was found to be highly selective for uPA. The cyclical structure of upain-1 was indispensable for uPA binding. Alanine-scanning mutagenesis identified Arg4 of upain-1 as the P1 residue and indicated an extended binding interaction including the specificity pocket and the 37-, 60-, and 97-loops of uPA and the P1, P2, P3′, P4′, and the P5′ residues of upain-1. Substitution with alanine of the P2 residue, Trp3, converted upain-1 into a distinct, although poor, uPA substrate. Upain-1 represents a new type of uPA inhibitor that achieves selectivity by targeting uPA-specific surface loops. Most likely, the inhibitory activity depends on its cyclical structure and the unusual P2 residue preventing the scissile bond from assuming a tetrahedral geometry and thus from undergoing hydrolysis. Peptide-derived inhibitors such as upain-1 may provide novel mechanistic information about enzyme-inhibitor interactions and alternative methodologies for designing effective protease inhibitors.


Thrombosis and Haemostasis | 2003

Biochemical importance of glycosylation of plasminogen activator inhibitor-1

Ann Gils; Katrine E. Pedersen; Peter Durand Skottrup; Anni Christensen; Dominik Naessens; Johanna Deinum; Jan J. Enghild; Paul Declerck; Peter A. Andreasen

The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosylation pattern of the sites at N209 and N265, while that at N329 is not utilised. The IC(50)-values for inactivation of PAI-1 by 4 monoclonal antibodies differed strongly between glycosylated PAI-1 and non-glycosylated PAI-1 expressed in E. coli. For 3 antibodies, an overlap of the epitopes with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended specifically on glycosylation of either one or the other of the utilised sites. The PAI-1-binding protein vitronectin reversed the changes associated with the lack of glycosylation at one of the sites. Our results stress the importance of the source of PAI-1 when studying the mechanisms of action of PAI-1-inactivating compounds of potential clinical importance.


Biochemical Journal | 2003

Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1.

Anja Pernille Einholm; Katrine E. Pedersen; Troels Wind; Paulina Kulig; Michael Toft Overgaard; Jan K. Jensen; Julie Støve Bødker; Anni Christensen; Peter Charlton; Peter A. Andreasen

XR5118 [(3 Z,6 Z )-6-benzylidine-3-(5-(2-dimethylaminoethyl-thio-))-2-(thienyl)methylene-2,5-dipiperazinedione hydrochloride] can inactivate the anti-proteolytic activity of the serpin plasminogen activator inhibitor-1 (PAI-1), a potential therapeutic target in cancer and cardiovascular diseases. Serpins inhibit their target proteases by the P(1) residue of their reactive centre loop (RCL) forming an ester bond with the active-site serine residue of the protease, followed by insertion of the RCL into the serpins large central beta-sheet A. In the present study, we show that the RCL of XR5118-inactivated PAI-1 is inert to reaction with its target proteases and has a decreased susceptibility to non-target proteases, in spite of a generally increased proteolytic susceptibility of specific peptide bonds elsewhere in PAI-1. The properties of XR5118-inactivated PAI-1 were different from those of the so-called latent form of PAI-1. Alanine substitution of several individual residues decreased the susceptibility of PAI-1 to XR5118. The localization of these residues in the three-dimensional structure of PAI-1 suggested that the XR5118-induced inactivating conformational change requires mobility of alpha-helix F, situated above beta-sheet A, and is in agreement with the hypothesis that XR5118 binds laterally to beta-sheet A. These results improve our understanding of the unique conformational flexibility of serpins and the biochemical basis for using PAI-1 as a therapeutic target.


Journal of Biological Chemistry | 2006

Evidence for a Pre-latent Form of the Serpin Plasminogen Activator Inhibitor-1 with a Detached β-Strand 1C

Daniel M. Dupont; Grant E. Blouse; Martin Hansen; Lisa Mathiasen; Signe Kjelgaard; Jan K. Jensen; Anni Christensen; Ann Gils; Paul Declerck; Peter A. Andreasen; Troels Wind

Latency transition of plasminogen activator inhibitor-1 (PAI-1) occurs spontaneously in the absence of proteases and results in stabilization of the molecule through insertion of its reactive center loop (RCL) as a strand in β-sheet A and detachment of β-strand 1C (s1C) at the C-terminal hinge of the RCL. This is one of the largest structural rearrangements known for a folded protein domain without a concomitant change in covalent structure. Yet, the sequence of conformational changes during latency transition remains largely unknown. We have now mapped the epitope for the monoclonal antibody H4B3 to the cleft revealed upon s1C detachment and shown that H4B3 inactivates recombinant PAI-1 in a time-dependent manner. With fluorescence spectroscopy, we show that insertion of the RCL is accelerated in the presence of H4B3, demonstrating that the loss of activity is the result of latency transition. Considering that the epitope for H4B3 appears to be occluded by s1C in active PAI-1, this finding suggests the existence of a pre-latent conformation on the path from active to latent PAI-1 characterized by at least partial detachment of s1C. Functional characterization of mutated PAI-1 variants suggests that a salt-bridge between Arg273 and Asp224 may stabilize the pre-latent conformation. The binding of H4B3 and of a peptide targeting the cleft revealed upon s1C detachment was hindered by the glycans attached to Asn267. Conclusively, we have provided evidence for the existence of an equilibrium between active PAI-1 and a pre-latent form, characterized by reversible detachment of s1C and formation of a glycan-shielded cleft in the molecule.


FEBS Journal | 2006

Binding areas of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex for endocytosis receptors of the low-density lipoprotein receptor family, determined by site-directed mutagenesis.

Sune Skeldal; Jakob Vejby Larsen; Katrine E. Pedersen; Helle H. Petersen; Rikke Egelund; Anni Christensen; Jan K. Jensen; Jørgen Gliemann; Peter A. Andreasen

Some endocytosis receptors related to the low‐density lipoprotein receptor, including low‐density lipoprotein receptor‐related protein‐1A, very‐low‐density lipoprotein receptor, and sorting protein‐related receptor, bind protease‐inhibitor complexes, including urokinase‐type plasminogen activator (uPA), plasminogen activator inhibitor‐1 (PAI‐1), and the uPA–PAI‐1 complex. The unique capacity of these receptors for high‐affinity binding of many structurally unrelated ligands renders mapping of receptor‐binding surfaces of serpin and serine protease ligands a special challenge. We have mapped the receptor‐binding area of the uPA–PAI‐1 complex by site‐directed mutagenesis. Substitution of a cluster of basic residues near the 37‐loop and 60‐loop of uPA reduced the receptor‐binding affinity of the uPA–PAI‐1 complex approximately twofold. Deletion of the N‐terminal growth factor domain of uPA reduced the affinity 2–4‐fold, depending on the receptor, and deletion of both the growth factor domain and the kringle reduced the affinity sevenfold. The binding affinity of the uPA–PAI‐1 complex to the receptors was greatly reduced by substitution of basic and hydrophobic residues in α‐helix D and α‐helix E of PAI‐1. The localization of the implicated residues in the 3D structures of uPA and PAI‐1 shows that they form a continuous receptor‐binding area spanning the serpin as well as the A‐chain and the serine protease domain of uPA. Our results suggest that the 10–100‐fold higher affinity of the uPA–PAI‐1 complex compared with the free components depends on the bonus effect of bringing the binding areas on uPA and PAI‐1 together on the same binding entity.


Biochemical Journal | 2003

Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands.

Katrine E. Pedersen; Anja Pernille Einholm; Anni Christensen; Lotte Schack; Troels Wind; John M. Kenney; Peter A. Andreasen

Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.


Journal of Biological Chemistry | 2008

Characterization of a Site on PAI-1 That Binds to Vitronectin Outside of the Somatomedin B Domain

Christine R. Schar; Jan K. Jensen; Anni Christensen; Grant E. Blouse; Peter A. Andreasen; Cynthia B. Peterson

Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are proteins that interact in the circulatory system and pericellular region to regulate fibrinolysis, cell adhesion, and migration. The interactions between the two proteins have been attributed primarily to binding of the somatomedin B (SMB) domain, which comprises the N-terminal 44 residues of vitronectin, to the flexible joint region of PAI-1, including residues Arg-103, Met-112, and Gln-125 of PAI-1. A strategy for deletion mutagenesis that removes the SMB domain demonstrates that this mutant form of vitronectin retains PAI-1 binding (Schar, C. R., Blouse, G. E., Minor, K. M., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297–10309). In the current study, the complementary binding site on PAI-1 was mapped by testing for the ability of a battery of PAI-1 mutants to bind to the engineered vitronectin lacking the SMB domain. This approach identified a second, separate site for interaction between vitronectin and PAI-1. The binding of PAI-1 to this site was defined by a set of mutations in PAI-1 distinct from the mutations that disrupt binding to the SMB domain. Using the mutations in PAI-1 to map the second site suggested interactions between α-helices D and E in PAI-1 and a site in vitronectin outside of the SMB domain. The affinity of this second interaction exhibited a KD value ∼100-fold higher than that of the PAI-1-somatomedin B interaction. In contrast to the PAI-1-somatomedin B binding, the second interaction had almost the same affinity for active and latent PAI-1. We hypothesize that, together, the two sites form an extended binding area that may promote assembly of higher order vitronectin-PAI-1 complexes.

Collaboration


Dive into the Anni Christensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knud J. Jensen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge