Anni H. Andersen
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anni H. Andersen.
Journal of Molecular Biology | 1991
Jesper Q. Svejstrup; Kent Christiansen; Irina Gromova; Anni H. Andersen; Ole Westergaard
A new technique for uncoupling the cleavage and religation half-reactions of topoisomerase I at a specific site has been developed. The technique takes advantage of a suicidal DNA substrate to attain enzyme-mediated cleavage without concomitant religation. Efficient religation can be achieved, subsequently, by addition of an oligonucleotide capable of hybridising to the non-cleaved strand of the suicide DNA substrate. The technique was used to study the effect of different compounds on the half-reactions of topoisomerase I. It was shown that topoisomerase I-mediated cleavage was inhibited by NaCl concentrations higher than 200 mM, while the religation reaction seemed unaffected by concentrations as high as 3 M-NaCl. The divalent cations Mg2+, Ca2+ and Mn2+ were found to enhance the cleavage but not the religation reaction of topoisomerase I, whereas Cu2+ and Zn2+ inhibited both reactions. Furthermore, the effect of the anti-neoplastic agent, camptothecin, on the half-reactions of topoisomerase I was investigated. It was found that the drug did not affect the cleavage reaction of topoisomerase I at the studied site, while the religation reaction of the enzyme was inhibited. Camptothecin was found to stabilise the enzyme-DNA cleavage complex even when the drug was added after complex formation.
Nucleic Acids Research | 2008
Felicie F. Andersen; Bjarne Knudsen; Cristiano L. P. Oliveira; Rikke Frøhlich; Dinna Krüger; Jörg Bungert; Mavis Agbandje-McKenna; Robert McKenna; Sissel Juul; Christopher Veigaard; Jørn Koch; John L. Rubinstein; Bernt Guldbrandtsen; Marianne Smedegaard Hede; Göran Karlsson; Anni H. Andersen; Jan Skov Pedersen; Birgitta R. Knudsen
The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∼30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures.
Molecular and Cellular Biology | 2003
Louise V. Laursen; Eleni Ampatzidou; Anni H. Andersen; Johanne M. Murray
ABSTRACT Members of the RecQ helicase subfamily are mutated in several human genomic instability syndromes, such as Bloom, Werner, and Rothmund-Thomson syndromes. We show that Rqh1, the single Schizosaccharomyces pombe homologue, is a 3′-to-5′ helicase and exists with Top3 in a high-molecular-weight complex. top3 deletion is inviable, and this is suppressed by concomitant loss of rqh1 helicase activity or loss of recombination functions. This is consistent with RecQ helicases in other systems. By using epistasis analysis of the UV radiation sensitivity and by analyzing the kinetics of Rhp51 (Rad51 homologue), Rqh1, and Top3 focus formation in response to UV in synchronized cells, we identify the first evidence of a function for Rqh1 and Top3 in the repair of UV-induced DNA damage in G2. Our data provide evidence that Rqh1 functions after Rad51 focus formation during DNA repair. We also identify a function for Rqh1 upstream of recombination in an Rhp18-dependent (Rad18 homologue) pathway. The model that these data allow us to propose helps to reconcile different interpretations of RecQ family helicase function that have arisen between work based on the S. pombe system and models based on studies of Saccharomyces cerevisiae SGS1 suggesting that RecQ helicases act before Rad51.
Molecular and Cellular Biology | 1996
S Jensen; Anni H. Andersen; E Kjeldsen; H Biersack; E H Olsen; T B Andersen; Ole Westergaard; B K Jakobsen
The functional domain structure of human DNA topoisomerase IIalpha and Saccharomyces cerevisiae DNA topoisomerase II was studied by investigating the abilities of insertion and deletion mutant enzymes to support mitotic growth and catalyze transitions in DNA topology in vitro. Alignment of the human topoisomerase IIalpha and S. cerevisiae topoisomerase II sequences defined 13 conserved regions separated by less conserved or differently spaced sequences. The spatial tolerance of the spacer regions was addressed by insertion of linkers. The importance of the conserved regions was assessed through deletion of individual domains. We found that the exact spacing between most of the conserved domains is noncritical, as insertions in the spacer regions were tolerated with no influence on complementation ability. All conserved domains, however, are essential for sustained mitotic growth of S. cerevisiae and for enzymatic activity in vitro. A series of topoisomerase II carboxy-terminal truncations were investigated with respect to the ability to support viability, cellular localization, and enzymatic properties. The analysis showed that the divergent carboxy-terminal region of human topoisomerase IIalpha is dispensable for catalytic activity but contains elements that specifically locate the protein to the nucleus.
Molecular Genetics and Genomics | 1996
Sanne Jensen; Charles Redwood; John R. Jenkins; Anni H. Andersen; Ian D. Hickson
The ability of the human DNA topoisomerase IIα and IIβ isozymes to complement functional defects conferred by conditionaltop2 mutations inSaccharomyces cerevisiae has been investigated. At the restrictive temperature,top2 strains show multiple abnormalities, including an inability to complete mitotic and meiotic division owing to a defect in chromosome segregation, and hyper-recombination within the repetitive rDNA gene cluster. We show that the human topoisomerases IIα and IIβ can each support both vegetative growth and the production of viable spores in atop2-4 mutant at the restrictive temperature. Similarly, both human isozymes can rescue a strain carrying atop2 gene disruption, and suppress hyper-recombination within the rDNA gene cluster. We conclude that the human topoisomerase IIα and IIβ isozymes are functionally interchangeable with yeast topoisomerase II and suggest that any isozyme-specific roles in human cells are likely to be dependent upon factors other than inherent differences in catalytic ability between the α and β isozymes.
Biochemistry | 2008
A. Kathleen McClendon; Amanda C. Gentry; Jennifer S. Dickey; Marie Brinch; Simon Bendsen; Anni H. Andersen; Neil Osheroff
Human topoisomerase IIalpha, but not topoisomerase IIbeta, can sense the geometry of DNA during relaxation and removes positive supercoils >10-fold faster than it does negative superhelical twists. In contrast, both isoforms maintain lower levels of DNA cleavage intermediates with positively supercoiled substrates. Since topoisomerase IIalpha and IIbeta differ primarily in their C-terminal domains (CTD), this portion of the protein may play a role in sensing DNA geometry. Therefore, to more fully assess the importance of the topoisomerase IIalpha CTD in the recognition of DNA topology, hTop2alphaDelta1175, a mutant human enzyme that lacks its CTD, was examined. The mutant enzyme relaxed negative and positive supercoils at similar rates but still maintained lower levels of cleavage complexes with positively supercoiled DNA. Furthermore, when the CTD of topoisomerase IIbeta was replaced with that of the alpha isoform, the resulting enzyme preferentially relaxed positively supercoiled substrates. In contrast, a chimeric topoisomerase IIalpha that carried the CTD of the beta isoform lost its ability to recognize the geometry of DNA supercoils during relaxation. These findings demonstrate that human topoisomerase IIalpha recognizes DNA geometry in a bimodal fashion, with the ability to preferentially relax positive DNA supercoils residing in the CTD. Finally, results with a series of human topoisomerase IIalpha mutants suggest that clusters of positively charged amino acid residues in the CTD are required for the enzyme to distinguish supercoil geometry during DNA relaxation and that deletion of even the most C-terminal cluster abrogates this recognition.
Journal of Cell Biology | 2010
Ryo Kawamura; Lisa H. Pope; Morten O. Christensen; Mingxuan Sun; Ksenia Terekhova; Fritz Boege; Christian Mielke; Anni H. Andersen; John F. Marko
Chromatin entanglements undergo specific protein-mediated compaction to fold into mitotic chromosomes.
Nucleic Acids Research | 2008
Anette Thyssen Jonstrup; Tina Thomsen; Yong Wang; Birgitta R. Knudsen; Jørn Koch; Anni H. Andersen
Although centromere function has been conserved through evolution, apparently no interspecies consensus DNA sequence exists. Instead, centromere DNA may be interconnected through the formation of certain DNA structures creating topological binding sites for centromeric proteins. DNA topoisomerase II is a protein, which is located at centromeres, and enzymatic topoisomerase II activity correlates with centromere activity in human cells. It is therefore possible that topoisomerase II recognizes and interacts with the alpha satellite DNA of human centromeres through an interaction with potential DNA structures formed solely at active centromeres. In the present study, human topoisomerase IIα-mediated cleavage at centromeric DNA sequences was examined in vitro. The investigation has revealed that the enzyme recognizes and cleaves a specific hairpin structure formed by alpha satellite DNA. The topoisomerase introduces a single-stranded break at the hairpin loop in a reaction, where DNA ligation is partly uncoupled from the cleavage reaction. A mutational analysis has revealed, which features of the hairpin are required for topoisomerease IIα-mediated cleavage. Based on this a model is discussed, where topoisomerase II interacts with two hairpins as a mediator of centromere cohesion.
ACS Nano | 2009
Felicie F. Andersen; Magnus Stougaard; Hanne Lærke Jørgensen; Simon Bendsen; Sissel Juul; Kristoffer Hald; Anni H. Andersen; Jørn Koch; Birgitta R. Knudsen
We previously demonstrated the conversion of a single human topoisomerase I mediated DNA cleavage-ligation event happening within nanometer dimensions to a micrometer-sized DNA molecule, readily detectable using standard fluorescence microscopy. This conversion was achieved by topoisomerase I mediated closure of a nicked DNA circle followed by rolling circle amplification leading to an anchored product that was visualized at the single molecule level by hybridization to fluorescently labeled probes (Stougaard et al. ACS Nano 2009, 3, 223-33). An important inherent property of the presented setup is, at least in theory, the easy adaptability to multiplexed enzyme detection simply by using differently labeled probes for the detection of rolling circle products of different circularized substrates. In the present study we demonstrate the specific detection of three different enzyme activities, human topoisomerase I, and Flp and Cre recombinase in nuclear extracts from human cells one at a time or multiplexed using the rolling circle amplification based single-molecule detection system. Besides serving as a proof-of-principle for the feasibility of the presented assay for multiplexed enzyme detection in crude human cell extracts, the simultaneous detection of Flp and Cre activities in a single sample may find immediate practical use since these enzymes are often used in combination to control mammalian gene expression.
PLOS Genetics | 2012
Jakob Madsen Pedersen; Jacob Fredsøe; Morten Roedgaard; Lotte Andreasen; Kamilla Mundbjerg; Mogens Kruhøffer; Marie Brinch; Mikkel H. Schierup; Lotte Bjergbaek; Anni H. Andersen
To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation.