Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anni Wärri is active.

Publication


Featured researches published by Anni Wärri.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Involvement of estrogen receptor β in terminal differentiation of mammary gland epithelium

Carola Förster; Sari Mäkelä; Anni Wärri; Silke Kietz; David L. Becker; Kjell Hultenby; Margaret Warner; Jan Åke Gustafsson

The mammary glands of prepubertal estrogen receptor (ER)β−/− mice are morphologically indistinguishable from those of WT littermates. It appears that, although ERβ is expressed in the mouse mammary gland, it is not involved in ductal growth of the gland. In this study, we examined the possibility that ERβ has a role in the differentiated function of the mammary gland. Pregnancy is rare in ERβ−/− mice, but an intensive breeding program produced seven pregnant ERβ−/− mice, of which five did not eat their offspring and continued to successful lactation. Histomorphological comparison of lactating glands revealed that alveoli were larger and there was less secretory epithelium in ERβ−/− than in WT mice. Ultrastructural analysis showed abundant milk droplets and normal apical villi in the luminal epithelial cells, but the extracellular matrix and lamina basalis were reduced, and very frequently the interepithelial cell space was increased. Levels of the adhesion molecules, E-cadherin, connexin 32, occludin, and integrin α2 were reduced, and no zona occludens was detectable. In addition, there was widespread expression of the proliferation marker, Ki-67, in luminal epithelial cells in ERβ−/− but not in WT mice. These findings suggest a role for ERβ in organization and adhesion of epithelial cells and hence for differentiated tissue morphology. We speculate that, because a reduced risk for breast cancer is conferred on women who breast-feed at an early age, ERβ could contribute to this risk reduction by facilitating terminal differentiation of the mammary gland.


Endocrinology | 2001

Altered Structure and Function of Reproductive Organs in Transgenic Male Mice Overexpressing Human Aromatase1

Xiangdong Li; Elina Nokkala; Wei Yan; Tomi Streng; Niina Saarinen; Anni Wärri; Ilpo Huhtaniemi; Risto Santti; Sari Mäkelä; Matti Poutanen

Aromatization of androgens is a key step in estrogen production, and it regulates the delicate balance between estrogens and androgens in the gonads and sex steroid target tissues. In the present study, we generated transgenic mice (AROM(+)) bearing the human ubiquitin C promoter/human P450 aromatase fusion gene. AROM(+) male mice are characterized by an imbalance in sex hormone metabolism, resulting in elevated serum E(2) concentrations, combined with significantly reduced testosterone and FSH levels, and elevated levels of PRL and corticosterone. AROM(+) males present a multitude of severe structural and functional alterations in the reproductive organs, such as cryptorchidism associated with Leydig cell hyperplasia, dysmorphic seminiferous tubules, and disrupted spermatogenesis. The males also have small or rudimentary accessory sex glands with abnormal morphology; a prominent prostatic utricle with squamous epithelial metaplasia, and edema in the ejaculatory ducts and vas deferens. In addition, the abdominal muscle wall is thin, and the adrenal glands are enlarged, with cortical hyperplasia. Some of the abnormalities, such as undescended testes and undeveloped prostate, resemble those observed in animals exposed perinatally to high levels of exogenous estrogen, indicating that the elevated aromatase activity results in excessive estrogen exposure during early phases of development. Some of the disorders in the reproductive organs, furthermore, can be explained by the fact that AROM(+) males are hypoandrogenic, and have elevated levels of serum PRL and corticosterone. Thus, the AROM(+) mouse model provides a novel tool to investigate the consequences of a prolonged increase in conversion of androgens to estrogens which results in complex hormonal disturbances altering the structure and function of various male reproductive organs.


Nutrition and Cancer | 2000

Hydroxymatairesinol, a Novel Enterolactone Precursor With Antitumor Properties From Coniferous Tree (Picea abies)

Niina Saarinen; Anni Wärri; Sari Mäkelä; Christer Eckerman; M. Reunanen; M. Ahotupa; S. M. Salmi; A. A. Franke; L. Kangas; Risto Santti

Abstract: The potential for the extraction of the plant lignan hydroxymatairesinol (HMR) in large scale from Norway spruce (Picea abies) has given us the opportunity to study the metabolism and biological actions of HMR in animals. HMR, the most abundant single component of spruce lignans, was metabolized to enterolactone (ENL) as the major metabolite in rats after oral administration. The amounts of urinary ENL increased with the dose of HMR (from 3 to 50 mg/kg), and only minor amounts of unmetabolized HMR isomers and other lignans were found in urine. HMR (15 mg/kg body wt po) given for 51 days decreased the number of growing tumors and increased the proportion of regressing and stabilized tumors in the rat dimethylbenz[a]anthracene-induced mammary tumor model. HMR (50 mg/kg body wt) did not exert estrogenic or antiestrogenic activity in the uterine growth test in immature rats. HMR also showed no antiandrogenic responses in the growth of accessory sex glands in adult male rats. Neither ENL nor enterodiol showed estrogenic or antiestrogenic activity via a classical a- or b-type estrogen receptor-mediated pathway in vitro at <1.0 mM. HMR was an effective antioxidant in vitro.


British Journal of Cancer | 2008

The role of early life genistein exposures in modifying breast cancer risk

Anni Wärri; Niina Saarinen; Sari Mäkelä; Leena Hilakivi-Clarke

Review of the existing literature suggests that consumption of soy foods or an exposure to a soy isoflavone genistein during childhood and adolescence in women, and before puberty onset in animals, reduces later mammary cancer risk. In animal studies, an exposure that is limited to the fetal period or adult life does not appear to have the same protective effect. A meta-analysis of human studies indicates a modest reduction in pre- and postmenopausal risk when dietary intakes are assessed during adult life. These findings concur with emerging evidence indicating that timing may be vitally important in determining the effects of various dietary exposures on the susceptibility to develop breast cancer. In this review, we address the mechanisms that might mediate the effects of an early life exposure to genistein on the mammary gland. The focus is on changes in gene expression, such as those involving BRCA1 and PTEN. It will be debated whether mammary stem cells are the targets of genistein-induced alterations and also whether the alterations are epigenetic. We propose that the effects on mammary gland morphology and signalling pathways induced by pubertal exposure to genistein mimic those induced by the oestrogenic environment of early first pregnancy.


Cancer Research | 2012

Endoplasmic Reticulum Stress, the Unfolded Protein Response, Autophagy, and the Integrated Regulation of Breast Cancer Cell Fate

Robert Clarke; Katherine L. Cook; Rong Hu; Caroline O.B. Facey; Iman Tavassoly; Jessica L. Schwartz; William T. Baumann; John J. Tyson; Jianhua Xuan; Yue Wang; Anni Wärri; Ayesha N. Shajahan

How breast cancer cells respond to the stress of endocrine therapies determines whether they will acquire a resistant phenotype or execute a cell-death pathway. After a survival signal is successfully executed, a cell must decide whether it should replicate. How these cell-fate decisions are regulated is unclear, but evidence suggests that the signals that determine these outcomes are highly integrated. Central to the final cell-fate decision is signaling from the unfolded protein response, which can be activated following the sensing of stress within the endoplasmic reticulum. The duration of the response to stress is partly mediated by the duration of inositol-requiring enzyme-1 activation following its release from heat shock protein A5. The resulting signals appear to use several B-cell lymphoma-2 family members to both suppress apoptosis and activate autophagy. Changes in metabolism induced by cellular stress are key components of this regulatory system, and further adaptation of the metabolome is affected in response to stress. Here we describe the unfolded protein response, autophagy, and apoptosis, and how the regulation of these processes is integrated. Central topologic features of the signaling network that integrate cell-fate regulation and decision execution are discussed.


Cancer Research | 2012

Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness.

Katherine L. Cook; Ayesha N. Shajahan; Anni Wärri; Lu Jin; Leena Hilakivi-Clarke; Robert Clarke

While more than 70% of breast cancers express estrogen receptor-α (ER+), endocrine therapies targeting these receptors often fail. The molecular mechanisms that underlie treatment resistance remain unclear. We investigated the potential role of glucose-regulated protein 78 (GRP78) in mediating estrogen resistance. Human breast tumors showed increased GRP78 expression when compared with normal breast tissues. However, GRP78 expression was reduced in ER+ breast tumors compared with HER2-amplifed or triple-negative breast tumors. ER+ antiestrogen-resistant cells and ER+ tumors with an acquired resistant antiestrogen phenotype were both shown to overexpress GRP78, which was not observed in cases of de novo resistance. Knockdown of GRP78 restored antiestrogen sensitivity in resistant cells, and overexpression of GRP78 promoted resistance in sensitive cells. Mechanistically, GRP78 integrated multiple cellular signaling pathways to inhibit apoptosis and stimulate prosurvival autophagy, which was dependent on TSC2/AMPK-mediated mTOR inhibition but not on beclin-1. Inhibition of autophagy prevented GRP78-mediated endocrine resistance, whereas caspase inhibition abrogated the resensitization that resulted from GRP78 loss. Simultaneous knockdown of GRP78 and beclin-1 synergistically restored antiestrogen sensitivity in resistant cells. Together, our findings reveal a novel role for GRP78 in the integration of cellular signaling pathways including the unfolded protein response, apoptosis, and autophagy to determine cell fate in response to antiestrogen therapy.


Nature Communications | 2012

High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring

Sonia de Assis; Anni Wärri; M. Idalia Cruz; Olusola Laja; Ye Tian; Bai Zhang; Yue Wang; Tim H M Huang; Leena Hilakivi-Clarke

Maternal exposures to environmental factors during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. Here we investigate whether feeding pregnant rats a high-fat (HF)- or ethinyl-oestradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. We show that mammary tumourigenesis is higher in daughters and granddaughters of HF rat dams and in daughters and great-granddaughters of EE2 rat dams. Outcross experiments suggest that the increase in mammary cancer risk is transmitted to HF granddaughters equally through the female or male germ lines, but it is only transmitted to EE2 granddaughters through the female germ line. The effects of maternal EE2 exposure on offsprings mammary cancer risk are associated with changes in the DNA methylation machinery and methylation patterns in mammary tissue of all three EE2 generations. We conclude that dietary and oestrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring, possibly through epigenetic means.


Journal of Agricultural and Food Chemistry | 2012

Influence of Berry Polyphenols on Receptor Signaling and Cell-Death Pathways: Implications for Breast Cancer Prevention

Harini S. Aiyer; Anni Wärri; Denzel R. Woode; Leena Hilakivi-Clarke; Robert Clarke

Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.


Clinical Cancer Research | 2014

Hydroxychloroquine Inhibits Autophagy to Potentiate Antiestrogen Responsiveness in ER+ Breast Cancer

Katherine L. Cook; Anni Wärri; David R. Soto-Pantoja; Pamela Ag Clarke; Cruz Mi; Alan Zwart; Robert Clarke

Purpose: Estrogen receptor-α (ERα)-targeted therapies including tamoxifen (TAM) or Faslodex (ICI) are used to treat ER+ breast cancers. Up to 50% of tumors will acquire resistance to these interventions. Autophagy has been implicated as a major driver of antiestrogen resistance. We have explored the ability of chloroquine (CQ), which inhibits autophagy, to affect antiestrogen responsiveness. Experimental Design: TAM-resistant MCF7-RR and ICI-resistant/TAM cross-resistant LCC9 ER+ breast cancer cells were injected into mammary fat pads of female athymic mice and treated with TAM and/or ICI in combination with oral low-dose CQ. Results: We show that CQ can increase antiestrogen responsiveness in MCF7-RR and LCC9 cells and tumors, likely through the inhibition of autophagy. However, the combination of ICI+CQ was less effective than CQ alone in vivo, unlike the TAM+CQ combination. Antiestrogen treatment stimulated angiogenesis in tumors but did not prevent CQ effectiveness. The lower efficacy of ICI+CQ was associated with ICI effects on cell-mediated immunity within the tumor microenvironment. The mouse chemokine KC (CXCL1) and IFNγ were differentially regulated by both TAM and ICI treatments, suggesting a possible effect on macrophage development/activity. Consistent with these observations, TAM+CQ treatment increased tumor CD68+ cells infiltration, whereas ICI and ICI+CQ reduced peripheral tumor macrophage content. Moreover, macrophage elimination of breast cancer target cells in vitro was reduced following exposure to ICI. Conclusion: CQ restores antiestrogen sensitivity to resistant tumors. Moreover, the beneficial combination of TAM+CQ suggests a positive outcome for ongoing neoadjuvant clinical trials using this combination for the treatment of ER+ ductal carcinoma in situ lesions. Clin Cancer Res; 20(12); 3222–32. ©2014 AACR.


Molecular Cancer Therapeutics | 2013

GX15-070 (Obatoclax) Induces Apoptosis and Inhibits Cathepsin D- and L–Mediated Autophagosomal Lysis in Antiestrogen-Resistant Breast Cancer Cells

Jessica L. Schwartz-Roberts; Ayesha N. Shajahan; Katherine L. Cook; Anni Wärri; Mones Abu-Asab; Robert Clarke

In estrogen receptor–positive (ER+) breast cancer cells, BCL2 overexpression contributes to antiestrogen resistance. Direct targeting of the antiapoptotic BCL2 members with GX15-070 (obatoclax), a BH3-mimetic currently in clinical development, is an attractive strategy to overcome antiestrogen resistance in some breast cancers. Recently, GX15-070 has been shown to induce both apoptosis and autophagy, yet the underlying cell death mechanisms have yet to be elucidated. Here, we show that GX15-070 is more effective in reducing the cell density of antiestrogen-resistant breast cancer cells versus sensitive cells and that this increased sensitivity of resistant cells to GX15-070 correlates with an accumulation of autophagic vacuoles. Formation of autophagosomes in GX15-070-treated cells was verified by changes in expression of the lipidation of microtubule-associated protein-1 light chain-3 and both confocal and transmission electron microscopy. While GX15-070 treatment promotes autophagic vacuole and autolysosome formation, p62/SQSTM1, a marker for autophagic degradation, levels accumulate. Moreover, GX15-070 exposure leads to a reduction in cathepsin D (CTSD) and L (CTSL1) protein expression that would otherwise digest autolysosome cargo. Thus, GX15-070 has dual roles in promoting cell death: (i) directly inhibiting antiapoptotic BCL2 family members, thereby inducing apoptosis; and (ii) inhibiting downstream CTSD and CTSL1 protein expression to limit the ability of cells to use degraded material to fuel cellular metabolism and restore homeostasis. Our data highlight a new mechanism of GX15-070-induced cell death that could be used to design novel therapeutic interventions for antiestrogen resistant breast cancer. Mol Cancer Ther; 12(4); 448–59. ©2013 AACR.

Collaboration


Dive into the Anni Wärri's collaboration.

Top Co-Authors

Avatar

Robert Clarke

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Jin

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Hu

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge