Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annick Raas-Rothschild is active.

Publication


Featured researches published by Annick Raas-Rothschild.


Nature Genetics | 2000

Identification of the gene causing mucolipidosis type IV.

Ruth Bargal; Nili Avidan; Edna Ben-Asher; Zvia Olender; Marcia Zeigler; Ayala Frumkin; Annick Raas-Rothschild; Gustavo Glusman; Doron Lancet; Gideon Bach

Mucolipidosis type IV (MLIV) is an autosomal recessive, neurodegenerative, lysosomal storage disorder characterized by psychomotor retardation and ophthalmological abnormalities including corneal opacities, retinal degeneration and strabismus. Most patients reach a maximal developmental level of 12–15 months. The disease was classified as a mucolipidosis following observations by electron microscopy indicating the lysosomal storage of lipids together with water-soluble, granulated substances. Over 80% of the MLIV patients diagnosed are Ashkenazi Jews, including severely affected and mildly affected patients. The gene causing MLIV was previously mapped to human chromosome 19p13.2–13.3 in a region of approximately 1 cM (ref. 7). Haplotype analysis in the MLIV gene region of over 70 MLIV Ashkenazi chromosomes indicated the existence of two founder chromosomes among 95% of the Ashkenazi MLIV families: a major haplotype in 72% and a minor haplotype in 23% of the MLIV chromosomes (ref. 7, and G.B., unpublished data). The remaining 5% are distinct haplotypes found only in single patients. The basic metabolic defect causing the lysosomal storage in MLIV has not yet been identified. Thus, positional cloning was an alternative to identify the MLIV gene. We report here the identification of a new gene in this human chromosomal region in which MLIV-specific mutations were identified.


Nature Genetics | 2001

Identification of the gene that, when mutated, causes the human obesity syndrome BBS4.

Kirk Mykytyn; Terry Braun; Rivka Carmi; Neena B. Haider; Charles Searby; Mythreyi Shastri; Gretel Beck; Alan F. Wright; Alessandro Iannaccone; Khalil Elbedour; Ruth Riise; Alfonso Baldi; Annick Raas-Rothschild; Susan W. Gorman; David Duhl; Samuel G. Jacobson; Thomas L. Casavant; Edwin M. Stone; Val C. Sheffield

Bardet–Biedl syndrome (BBS, MIM 209900) is a heterogeneous autosomal recessive disorder characterized by obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. The disorder is also associated with diabetes mellitus, hypertension, and congenital heart disease. Six distinct BBS loci map to 11q13 (BBS1), 16q21 (BBS2), 3p13–p12 (BBS3), 15q22.3–q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although BBS is rare in the general population (<1/100,000), there is considerable interest in identifying the genes causing BBS because components of the phenotype, such as obesity and diabetes, are common. We and others have demonstrated that BBS6 is caused by mutations in the gene MKKS (refs. 12,13), mutation of which also causes McKusick–Kaufman syndrome (hydrometrocolpos, post-axial polydactyly, and congenital heart defects). MKKS has sequence homology to the alpha subunit of a prokaryotic chaperonin in the thermosome Thermoplasma acidophilum. We recently identified a novel gene that causes BBS2. The BBS2 protein has no significant similarity to other chaperonins or known proteins. Here we report the positional cloning and identification of mutations in BBS patients in a novel gene designated BBS4.


Nature Medicine | 2005

Mucolipidosis II is caused by mutations in GNPTA encoding the alpha/beta GlcNAc-1-phosphotransferase

Stephan Tiede; Stephan Storch; Torben Lübke; Bernhard Henrissat; Ruth Bargal; Annick Raas-Rothschild; Thomas Braulke

Mucolipidosis II (ML II) is a fatal lysosomal storage disorder resulting from defects in the multimeric GlcNAc-1-phosphotransferase responsible for the initial step in the generation of the mannose 6-phosphate (M6P) recognition marker. M6P residues on oligosaccharides of newly synthesized lysosomal enzymes are essential for efficient receptor-mediated transport to lysosomes. We used the recombinant GlcNAc-1-phosphotransferase γ subunit as an affinity matrix to purify an unknown protein identified as the product of GNPTA (encoding GNPTA, previously known as MGC4170). The cDNA encodes a protein of 1,256 amino acids with two putative transmembrane domains and a complex preserved modular structure comprising at least six domains. The N-terminal domain of GNPTA, interrupted by a long insertion, shows similarities to bacterial capsule biosynthesis proteins. We identified seven mutations in GNPTA that lead to premature translational termination in six individuals with ML II. Retroviral transduction of fibroblasts from an individual with ML II resulted in the expression and localization of GNPTA in the Golgi apparatus, accompanied by the correction of hypersecretion of lysosomal enzymes. Our results provide evidence that GNPTA encodes a subunit of GlcNAc-1-phosphotransferase defective in individuals with ML II.


American Journal of Human Genetics | 2004

Null Leukemia Inhibitory Factor Receptor (LIFR) Mutations in Stüve-Wiedemann/Schwartz-Jampel Type 2 Syndrome

Nathalie Dagoneau; Déborah Scheffer; Céline Huber; Lihadh Al-Gazali; Maja Di Rocco; Anne Godard; Jelena Martinovic; Annick Raas-Rothschild; Sabine Sigaudy; Sheila Unger; Sophie Nicole; Bertrand Fontaine; Jean-Luc Taupin; Jean-François Moreau; Andrea Superti-Furga; Martine Le Merrer; Jacky Bonaventure; Arnold Munnich; Laurence Legeai-Mallet; Valérie Cormier-Daire

Stuve-Wiedemann syndrome (SWS) is a severe autosomal recessive condition characterized by bowing of the long bones, with cortical thickening, flared metaphyses with coarsened trabecular pattern, camptodactyly, respiratory distress, feeding difficulties, and hyperthermic episodes responsible for early lethality. Clinical overlap with Schwartz-Jampel type 2 syndrome (SJS2) has suggested that SWS and SJS2 could be allelic disorders. Through studying a series of 19 families with SWS/SJS2, we have mapped the disease gene to chromosome 5p13.1 at locus D5S418 (Zmax=10.66 at theta =0) and have identified null mutations in the leukemia inhibitory factor receptor (LIFR or gp190 chain) gene. A total of 14 distinct mutations were identified in the 19 families. An identical frameshift insertion (653_654insT) was identified in families from the United Arab Emirates, suggesting a founder effect in that region. It is interesting that 12/14 mutations predicted premature termination of translation. Functional studies indicated that these mutations alter the stability of LIFR messenger RNA transcripts, resulting in the absence of the LIFR protein and in the impairment of the JAK/STAT3 signaling pathway in patient cells. We conclude, therefore, that SWS and SJS2 represent a single clinically and genetically homogeneous condition due to null mutations in the LIFR gene on chromosome 5p13.


American Journal of Human Genetics | 2011

Adaptor Protein Complex 4 Deficiency Causes Severe Autosomal-Recessive Intellectual Disability, Progressive Spastic Paraplegia, Shy Character, and Short Stature

Rami Abou Jamra; Orianne Philippe; Annick Raas-Rothschild; Sebastian H. Eck; Elisabeth Graf; Rebecca Buchert; Guntram Borck; Arif B. Ekici; Felix F. Brockschmidt; Markus M. Nöthen; Arnold Munnich; Tim M. Strom; André Reis; Laurence Colleaux

Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.


Movement Disorders | 2011

Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond.

Tamar Shachar; Christophe Lo Bianco; Christoph Wiessner; Annick Raas-Rothschild; Anthony H. Futerman

Parkinsons disease is associated with mutations in the glucocerebrosidase gene, which result in the enzyme deficiency causing Gaucher disease, the most common lysosomal storage disorder. We have performed an exhaustive literature search and found that additional lysosomal storage disorders might be associated with Parkinsons disease, based on case reports, the appearance of pathological features such as α‐synuclein deposits in the brain, and substantia nigra pathology. Our findings suggest that the search for biochemical and cellular pathways that link Parkinsons disease with lysosomal storage disorders should not be limited exclusively to changes that occur in Gaucher disease, such as changes in glucocerebrosidase activity or in glucosylceramide levels, but rather include changes that might be common to a wide variety of lysosomal storage disorders. Moreover, we propose that additional genetic, epidemiological, and clinical studies should be performed to check the precise incidence of mutations in genes encoding lysosomal proteins in patients displaying Parkinsons symptoms.


Human Molecular Genetics | 2008

The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity

Miriam Gordillo; Hugo Vega; Alison H. Trainer; Fajian Hou; Norio Sakai; Ricardo Luque; Hülya Kayserili; Seher Basaran; Flemming Skovby; Raoul C. M. Hennekam; Maria Luisa Giovannucci Uzielli; Rhonda E. Schnur; Sylvie Manouvrier; Susan Chang; Edward Blair; Jane A. Hurst; Francesca Forzano; Moritz Meins; Kalle O.J. Simola; Annick Raas-Rothschild; Roger A. Schultz; Lisa D. McDaniel; Keiichi Ozono; Koji Inui; Hui Zou; Ethylin Wang Jabs

Roberts syndrome/SC phocomelia (RBS) is an autosomal recessive disorder with growth retardation, craniofacial abnormalities and limb reduction. Cellular alterations in RBS include lack of cohesion at the heterochromatic regions around centromeres and the long arm of the Y chromosome, reduced growth capacity, and hypersensitivity to DNA damaging agents. RBS is caused by mutations in ESCO2, which encodes a protein belonging to the highly conserved Eco1/Ctf7 family of acetyltransferases that is involved in regulating sister chromatid cohesion. We identified 10 new mutations expanding the number to 26 known ESCO2 mutations. We observed that these mutations result in complete or partial loss of the acetyltransferase domain except for the only missense mutation that occurs in this domain (c.1615T>G, W539G). To investigate the mechanism underlying RBS, we analyzed ESCO2 mutations for their effect on enzymatic activity and cellular phenotype. We found that ESCO2 W539G results in loss of autoacetyltransferase activity. The cellular phenotype produced by this mutation causes cohesion defects, proliferation capacity reduction and mitomycin C sensitivity equivalent to those produced by frameshift and nonsense mutations associated with decreased levels of mRNA and absence of protein. We found decreased proliferation capacity in RBS cell lines associated with cell death, but not with increased cell cycle duration, which could be a factor in the development of phocomelia and cleft palate in RBS. In summary, we provide the first evidence that loss of acetyltransferase activity contributes to the pathogenesis of RBS, underscoring the essential role of the enzymatic activity of the Eco1p family of proteins.


Clinical Genetics | 2009

Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts

Florence Molinari; Anna Kaminska; Giuseppe Fiermonte; Nathalie Boddaert; Annick Raas-Rothschild; Perrine Plouin; Luigi Palmieri; Francis Brunelle; Ferdinando Palmieri; Olivier Dulac; Arnold Munnich; Laurence Colleaux

Neonatal epileptic encephalopathies with suppression bursts (SBs) are very severe and relatively rare diseases characterized by neonatal onset of seizures, interictal electroencephalogram (EEG) with SB pattern and very poor neurological outcome or death. Their etiology remains elusive but they are occasionally caused by metabolic diseases or malformations. Studying an Arab Muslim Israeli consanguineous family, with four affected children presenting a severe neonatal epileptic encephalopathy, we have previously identified a mutation in the SLC25A22 gene encoding a mitochondrial glutamate transporter. In this report, we describe a novel SLC25A22 mutation in an unrelated patient born from first cousin Algerian parents and presenting severe epileptic encephalopathy characterized by an EEG with SB, hypotonia, microcephaly and abnormal electroretinogram. We showed that this patient carried a homozygous p.G236W SLC25A22 mutation which alters a highly conserved amino acid and completely abolishes the glutamate carriers activity in vitro. Comparison of the clinical features of patients from both families suggests that SLC25A22 mutations are responsible for a novel clinically recognizable epileptic encephalopathy with SB.


American Journal of Medical Genetics Part A | 2005

Further delineation of Kabuki syndrome in 48 well-defined new individuals†

Linlea Armstrong; Azza Abd El Moneim; Kirk Aleck; David J. Aughton; Clarisse Baumann; Stephen R. Braddock; Gabriele Gillessen-Kaesbach; John M. Graham; Theresa A. Grebe; Karen W. Gripp; Bryan D. Hall; Raoul C. M. Hennekam; Alasdair G. W. Hunter; Kim M. Keppler-Noreuil; Didier Lacombe; Angela E. Lin; Jeffrey E. Ming; Nancy Mizue Kokitsu-Nakata; Sarah M. Nikkel; Nicole Philip; Annick Raas-Rothschild; Annemarie Sommer; Alain Verloes; Claudia Walter; Dagmar Wieczorek; Marc S. Williams; Elaine H. Zackai; Judith Allanson

Kabuki syndrome is a multiple congenital anomaly/mental retardation syndrome. This study of Kabuki syndrome had two objectives. The first was to further describe the syndrome features. In order to do so, clinical geneticists were asked to submit cases—providing clinical photographs and completing a phenotype questionnaire for individuals in whom they felt the diagnosis of Kabuki syndrome was secure. All submitted cases were reviewed by four diagnosticians familiar with Kabuki syndrome. The diagnosis was agreed upon in 48 previously unpublished individuals. Our data on these 48 individuals show that Kabuki syndrome variably affects the development and function of many organ systems. The second objective of the study was to explore possible etiological clues found in our data and from review of the literature. We discuss advanced paternal age, cytogenetic abnormalities, and familial cases, and explore syndromes with potentially informative overlapping features. We find support for a genetic etiology, with a probable autosomal dominant mode of inheritance, and speculate that there is involvement of the interferon regulatory factor 6 (IRF6) gene pathway. Very recently, a microduplication of 8p has been described in multiple affected individuals, the proportion of individuals with the duplication is yet to be determined.


American Journal of Medical Genetics | 2000

Contribution of connexin 26 mutations to nonsyndromic deafness in Ashkenazi patients and the variable phenotypic effect of the mutation 167delT

Israela Lerer; Michal Sagi; Esther Malamud; Haya Levi; Annick Raas-Rothschild; Dvorah Abeliovich

Twenty-seven unrelated Jewish Ashkenazi patients with nonsyndromic prelingual deafness (NSD) were analyzed for mutations in the coding sequence of the connexin 26 (Cx26) gene. Biallelic mutations were identified in 19 of the 27 patients (70.4%); 12 were homozygous for the mutation 167delT, 2 were homozygous for the mutation 35delG, and 5 were compound 167delT/35delG heterozygotes. In addition three patients were heterozygous with no second identified mutation in the Cx26 gene. Biallelic mutations in the Cx26 gene account for 83% of familial cases and 44% of the sporadic cases. Among 268 unselected Ashkenazi individuals, 20 were 167delT/N heterozygotes, giving an estimate of 7.5% carrier frequency. Based on the 167delT carrier frequency in three studies (including the present one), it is expected that 167delT/167delT homozygotes account for 70% of all patients with NSD (1 in 1300). The hearing capacity of 30 patients (probands and their sibs) with biallelic Cx26 mutations and at least one allele with 167delT demonstrated inter- and intrafamilial variability from profound to mild hearing impairment.

Collaboration


Dive into the Annick Raas-Rothschild's collaboration.

Top Co-Authors

Avatar

Ruth Bargal

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marsha Zeigler

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gideon Bach

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Israela Lerer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ziva Ben-Neriah

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Martine Le Merrer

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge