Annie Aubry
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annie Aubry.
Molecular Microbiology | 2003
Michael Schirm; Evelyn C. Soo; Annie Aubry; J. Austin; Pierre Thibault; Susan M. Logan
Mass spectrometry analyses of the complex polar flagella from Helicobacter pylori demonstrated that both FlaA and FlaB proteins are post‐translationally modified with pseudaminic acid (Pse5Ac7Ac, 5,7‐diacetamido‐3,5,7,9‐tetradeoxy‐l‐glycero‐l‐manno ‐n o n‐ulosonic acid). Unlike Campylobacter, flagellar glycosylation in Helicobacter displays little heterogeneity in isoform or glycoform distribution, although all glycosylation sites are located in the central core region of the protein monomer in a manner similar to that found in Campylobacter. Bioinformatic analysis revealed five genes (HP0840, HP0178, HP0326A, HP0326B, HP0114) homologous to other prokaryote genes previously reported to be involved in motility, flagellar glycosylation or polysaccharide biosynthesis. Insertional mutagenesis of four of these homologues in Helicobacter (HP0178, HP0326A, HP0326B, HP0114) resulted in a non‐motile phenotype, no structural flagella filament and only minor amounts of flagellin protein detectable by Western immunoblot. However, mRNA levels for the flagellin structural genes remained unaffected by each mutation. In view of the combined bioinformatic and structural evidence indicating a role for these gene products in glycan biosynthesis, subsequent investigations focused on the functional characterization of the respective gene products. A novel approach was devised to identify biosynthetic sugar nucleotide precursors from intracellular metabolic pools of parent and isogenic mutants using capillary electrophoresis‐electrospray mass spectrometry (CE‐ESMS) and precursor ion scanning. HP0326A, HP0326B and the HP0178 gene products are directly involved in the biosynthesis of the nucleotide‐activated form of Pse, CMP‐Pse. Mass spectral analyses of the cytosolic extract from the HP0326A and HP0326B isogenic mutants revealed the accumulation of a mono‐ and a diacetamido trideoxyhexose UDP sugar nucleotide precursor.
Journal of Bacteriology | 2009
Susan M. Twine; Christopher W. Reid; Annie Aubry; David R. McMullin; Kelly M. Fulton; John W. Austin; Susan M. Logan
In this study, intact flagellin proteins were purified from strains of Clostridium difficile and analyzed using quadrupole time of flight and linear ion trap mass spectrometers. Top-down studies showed the flagellin proteins to have a mass greater than that predicted from the corresponding gene sequence. These top-down studies revealed marker ions characteristic of glycan modifications. Additionally, diversity in the observed masses of glycan modifications was seen between strains. Electron transfer dissociation mass spectrometry was used to demonstrate that the glycan was attached to the flagellin protein backbone in O linkage via a HexNAc residue in all strains examined. Bioinformatic analysis of C. difficile genomes revealed diversity with respect to glycan biosynthesis gene content within the flagellar biosynthesis locus, likely reflected by the observed flagellar glycan diversity. In C. difficile strain 630, insertional inactivation of a glycosyltransferase gene (CD0240) present in all sequenced genomes resulted in an inability to produce flagellar filaments at the cell surface and only minor amounts of unmodified flagellin protein.
Infection and Immunity | 2009
Sarah L. Howard; Aparna Jagannathan; Evelyn C. Soo; Joseph P. M. Hui; Annie Aubry; Imran Ahmed; Andrey V. Karlyshev; John F. Kelly; Michael Jones; Mark P. Stevens; Susan M. Logan; Brendan W. Wren
ABSTRACT Previously, we identified five genes (Cj1321 to Cj1326, of which Cj1325 and Cj1326 are a single gene) in the O-linked flagellin glycosylation island that are highly prevalent in Campylobacter jejuni isolates from chickens. We report mutagenesis, functional, and structural data to confirm that this locus, and Cj1324 in particular, has a significant contributory role in the colonization of chickens by C. jejuni. A motile ΔCj1324 mutant with intact flagella was considerably less hydrophobic and less able to autoagglutinate and form biofilms than the parent strain, 11168H, suggesting that the surface charge of flagella of Cj1324-deficient strains was altered. The physical and functional attributes of the parent were restored upon complementation. Structural analysis of flagellin protein purified from the ΔCj1324 mutant revealed the absence of two legionaminic acid glycan modifications that were present in the parent strain, 11168H. These glycoform modifications were shown to be prevalent in chicken isolates and confirm that differences in the highly variable flagellin glycosylation locus can relate to the strain source. The discovery of molecular mechanisms influencing the persistence of C. jejuni in poultry aids the rational design of approaches to control this problematic pathogen in the food chain.
Journal of Biological Chemistry | 2006
David J. McNally; Joseph P. M. Hui; Annie Aubry; Kenneth K. K. Mui; Patricia Guerry; Jean-Robert Brisson; Susan M. Logan; Evelyn C. Soo
Bacterial genome sequencing has provided a wealth of genetic data. However, the definitive functional characterization of hypothetical open reading frames and novel biosynthetic genes remains challenging. This is particularly true for genes involved in protein glycosylation because the isolation of their glycan moieties is often problematic. We have developed a focused metabolomics approach to define the function of flagellin glycosylation genes in Campylobacter jejuni 81–176. A capillary electrophoresis-electrospray mass spectrometry and precursor ion scanning method was used to examine cell lysates of C. jejuni 81–176 for sugar nucleotides. Novel nucleotide-activated intermediates of the pseudaminic acid (Pse5NAc7NAc) pathway and its acetamidino derivative (PseAm) were found to accumulate within select isogenic mutants, and use of a hydrophilic interaction liquid chromatography-mass spectrometry method permitted large scale purifications of the intermediates. NMR with cryo probe (cold probe) technology was utilized to complete the structural characterization of microgram quantities of CMP-5-acetamido-7-acetamidino-3,5,7,9-tetradeoxy-l-glycero-α-l-manno-nonulosonic acid (CMP-Pse5NAc7Am), which is the first report of Pse modified at C7 with an acetamidino group in Campylobacter, and UDP-2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, which is a bacillosamine derivative found in the N-linked proteinglycan. Using this focused metabolomics approach, pseB, pseC, pseF, pseI, and for the first time pseA, pseG, and pseH were found to be directly involved in either the biosynthesis of CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am. In contrast, it was shown that pseD, pseE, Cj1314c, Cj1315c, Cjb1301, Cj1334, Cj1341c, and Cj1342c have no role in the CMP-Pse5NAc7NAc or CMP-Pse5NAc7Am pathways. These results demonstrate the usefulness of this approach for targeting compounds within the bacterial metabolome to assign function to genes, identify metabolic intermediates, and elucidate novel biosynthetic pathways.
Journal of Biological Chemistry | 2007
David J. McNally; Annie Aubry; Joseph P. M. Hui; Nam Huan Khieu; Dennis M. Whitfield; Cheryl P. Ewing; Patricia Guerry; Jean-Robert Brisson; Susan M. Logan; Evelyn C. Soo
Glycosylation of Campylobacter flagellin is required for the biogenesis of a functional flagella filament. Recently, we used a targeted metabolomics approach using mass spectrometry and NMR to identify changes in the metabolic profile of wild type and mutants in the flagellar glycosylation locus, characterize novel metabolites, and assign function to genes to define the pseudaminic acid biosynthetic pathway in Campylobacter jejuni 81-176 (McNally, D. J., Hui, J. P., Aubry, A. J., Mui, K. K., Guerry, P., Brisson, J. R., Logan, S. M., and Soo, E. C. (2006) J. Biol. Chem. 281, 18489-18498). In this study, we use a similar approach to further define the glycome and metabolomic complement of nucleotide-activated sugars in Campylobacter coli VC167. Herein we demonstrate that, in addition to CMP-pseudaminic acid, C. coli VC167 also produces two structurally distinct nucleotide-activated nonulosonate sugars that were observed as negative ions at m/z 637 and m/z 651 (CMP-315 and CMP-329). Hydrophilic interaction liquid chromatography-mass spectrometry yielded suitable amounts of the pure sugar nucleotides for NMR spectroscopy using a cold probe. Structural analysis in conjunction with molecular modeling identified the sugar moieties as acetamidino and N-methylacetimidoyl derivatives of legionaminic acid (Leg5Am7Ac and Leg5AmNMe7Ac). Targeted metabolomic analyses of isogenic mutants established a role for the ptmA-F genes and defined two new ptm genes in this locus as legionaminic acid biosynthetic enzymes. This is the first report of legionaminic acid in Campylobacter sp. and the first report of legionaminic acid derivatives as modifications on a protein.
Journal of Bacteriology | 2004
Michael Schirm; M. Kalmokoff; Annie Aubry; P. Thibault; M. Sandoz; Susan M. Logan
Glycan staining of purified flagellin from Listeria monocytogenes serotypes 1/2a, 1/2b, 1/2c, and 4b suggested that the flagellin protein from this organism is glycosylated. Mass spectrometry analysis demonstrated that the flagellin protein of L. monocytogenes is posttranslationally modified with O-linked N-acetylglucosamine (GlcNAc) at up to six sites/monomer. The sites of glycosylation are all located in the central, surface-exposed region of the protein monomer. Immunoblotting with a monoclonal antibody specific for beta-O-linked GlcNAc confirmed that the linkage was in the beta configuration, this residue being a posttranslational modification commonly observed in eukaryote nuclear and cytoplasmic proteins.
Journal of Biological Chemistry | 2006
Ian C. Schoenhofen; Vladimir V. Lunin; Jean-Philippe Julien; Yunge Li; Eunice Ajamian; Allan Matte; Miroslaw Cygler; Jean-Robert Brisson; Annie Aubry; Susan M. Logan; Smita Bhatia; Warren W. Wakarchuk; N. Martin Young
Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. Because motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-α-d-Glc-NAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-β-l-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-β-l-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-β-l-AltNAc product, the latter being converted to the external aldimine form in the active site of the enzyme. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation, which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the β-l-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and, in conjunction with the recent functional characterization of this enzyme, these results will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.
Infection and Immunity | 2012
Annie Aubry; Greg Hussack; Wangxue Chen; Rhonda KuoLee; Susan M. Twine; Kelly M. Fulton; Simon J. Foote; Catherine D. Carrillo; Jamshid Tanha; Susan M. Logan
ABSTRACT We show in this study that toxin production in Clostridium difficile is altered in cells which can no longer form flagellar filaments. The impact of inactivation of fliC, CD0240, fliF, fliG, fliM, and flhB-fliR flagellar genes upon toxin levels in culture supernatants was assessed using cell-based cytotoxicity assay, proteomics, immunoassay, and immunoblotting approaches. Each of these showed that toxin levels in supernatants were significantly increased in a fliC mutant compared to that in the C. difficile 630 parent strain. In contrast, the toxin levels in supernatants secreted from other flagellar mutants were significantly reduced compared with that in the parental C. difficile 630 strain. Transcriptional analysis of the pathogenicity locus genes (tcdR, tcdB, tcdE, and tcdA) revealed a significant increase of all four genes in the fliC mutant strain, while transcription of all four genes was significantly reduced in fliM, fliF, fliG, and flhB-fliR mutants. These results demonstrate that toxin transcription in C. difficile is modulated by the flagellar regulon. More significantly, mutant strains showed a corresponding change in virulence compared to the 630 parent strain when tested in a hamster model of C. difficile infection. This is the first demonstration of differential flagellum-related transcriptional regulation of toxin production in C. difficile and provides evidence for elaborate regulatory networks for virulence genes in C. difficile.
FEBS Journal | 2009
Susan M. Logan; Joseph P. M. Hui; Evgeny Vinogradov; Annie Aubry; Jeremy E. Melanson; John F. Kelly; Harald Nothaft; Evelyn C. Soo
It is well known that the flagellin of Campylobacter jejuni is extensively glycosylated by pseudaminic acid and the related acetamindino derivative, in addition to flagellin glycosylation being essential for motility and colonization of host cells. Recently, the use of metabolomics permitted the unequivocal characterization of unique flagellin modifications in Campylobacter, including novel legionaminic acid sugars in Campylobacter coli, which had been impossible to ascertain in earlier studies using proteomics‐based approaches. To date, the precise identities of the flagellin glycosylation modifications have only been elucidated for C. jejuni 81‐176 and C. coli VC167 and those present in the first genome‐sequenced strain C. jejuni 11168 remain elusive due to lability and respective levels of individual glycan modifications. We report the characterization of the carbohydrate modifications on C. jejuni 11168 flagellin using metabolomics‐based approaches. Detected as their corresponding CMP‐linked precursors, structural information on the flagellin modifications was obtained using a combination of MS and NMR spectroscopy. In addition to the pseudaminic acid and legionaminic acid sugars known to be present on Campylobacter flagellin, two unusual 2,3‐di‐O‐methylglyceric acid modifications of a nonulosonate sugar were identified. By performing a metabolomic analysis of selected isogenic mutants of genes from the flagellin glycosylation locus of this pathogen, these novel CMP‐linked precursors were confirmed to be di‐O‐methylglyceric acid derivatives of pseudaminic acid and the related acetamidino sugar. This is the first comprehensive analysis of the flagellar modifications in C. jejuni 11168 and structural elucidation of di‐O‐methylglyceric acid derivatives of pseudaminic acid on Campylobacter flagellin.
ChemBioChem | 2009
Feng Liu; Annie Aubry; Ian C. Schoenhofen; Susan M. Logan; Martin E. Tanner
Catch a tiger by the tail: We have demonstrated that by feeding nonmotile mutant C. jejuni bacteria with a neutral azide‐labelled pseudaminic acid precursor we can restore their ability to generate functional flagella. The presence of azido‐pseudaminic acid on the surface of the flagella provides a bio‐orthogonal chemical handle that can be used to modify the flagellar proteins.