Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annie Hughes is active.

Publication


Featured researches published by Annie Hughes.


Astronomy and Astrophysics | 2010

HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE): The Large Magellanic Cloud dust

Margaret M. Meixner; F. Galliano; S. Hony; Julia Roman-Duval; Thomas P. Robitaille; P. Panuzzo; M. Sauvage; Karl D. Gordon; C. W. Engelbracht; Karl Anthony Misselt; K. Okumura; Tracy L. Beck; J.-P. Bernard; Alberto D. Bolatto; Caroline Bot; Martha L. Boyer; S. Bracker; Lynn Redding Carlson; Geoffrey C. Clayton; C.-H. R. Chen; E. Churchwell; Yasuo Fukui; M. Galametz; Joseph L. Hora; Annie Hughes; Remy Indebetouw; F. P. Israel; Akiko Kawamura; F. Kemper; Sungeun Kim

The HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) of the Magellanic Clouds will use dust emission to investigate the life cycle of matter in both the Large and Small Magellanic Clouds (LMC and SMC). Using the Herschel Space Observatory’s PACS and SPIRE photometry cameras, we imaged a 2° × 8° strip through the LMC, at a position angle of ~22.5° as part of the science demonstration phase of the Herschel mission. We present the data in all 5 Herschel bands: PACS 100 and 160 μm and SPIRE 250, 350 and 500 μm. We present two dust models that both adequately fit the spectral energy distribution for the entire strip and both reveal that the SPIRE 500 μm emission is in excess of the models by ~6 to 17%. The SPIRE emission follows the distribution of the dust mass, which is derived from the model. The PAH-to-dust mass (f_(PAH)) image of the strip reveals a possible enhancement in the LMC bar in agreement with previous work. We compare the gas mass distribution derived from the HI 21 cm and CO J = 1−0 line emission maps to the dust mass map from the models and derive gas-to-dust mass ratios (GDRs). The dust model, which uses the standard graphite and silicate optical properties for Galactic dust, has a very low GDR = 65^(+15) _(−18) making it an unrealistic dust model for the LMC. Our second dust model, which uses amorphous carbon instead of graphite, has a flatter emissivity index in the submillimeter and results in a GDR = 287^_(+25)_(−42) that is more consistent with a GDR inferred from extinction.


Astrophysical Journal Supplement Series | 2011

The Magellanic Mopra Assessment (MAGMA). I. the molecular cloud population of the large magellanic cloud

Tony Wong; Annie Hughes; Joergen Ott; Erik Muller; Jorge L. Pineda; J.-P. Bernard; You-Hua Chu; Yasuo Fukui; Robert A. Gruendl; C. Henkel; Akiko Kawamura; Ulrich Klein; Leslie W. Looney; Sarah T. Maddison; Yoji Mizuno; D. Paradis; Jonathan P. Seale; Daniel E. Welty

We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11?pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dLL ?2, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a clouds kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.


The Astrophysical Journal | 2013

THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS). I. A CLOUD-SCALE/MULTI-WAVELENGTH VIEW OF THE INTERSTELLAR MEDIUM IN A GRAND-DESIGN SPIRAL GALAXY

E. Schinnerer; Sharon E. Meidt; J. Pety; Annie Hughes; Dario Colombo; Santiago Garcia-Burillo; Karl Schuster; Gaelle Dumas; Clare L. Dobbs; Adam K. Leroy; C. Kramer; Todd A. Thompson; Michael W. Regan

The Plateau de Bure Interferometer Arcsecond Whirlpool Survey has mapped the molecular gas in the central similar to 9 kpc of M51 in its (CO)-C-12(1-0) line emission at a cloud-scale resolution of similar to 40 pc using both IRAM telescopes. We utilize this data set to quantitatively characterize the relation of molecular gas (or CO emission) to other tracers of the interstellar medium, star formation, and stellar populations of varying ages. Using two-dimensional maps, a polar cross-correlation technique and pixel-by-pixel diagrams, we find: (1) that (as expected) the distribution of the molecular gas can be linked to different components of the gravitational potential; (2) evidence for a physical link between CO line emission and radio continuum that seems not to be caused by massive stars, but rather depends on the gas density; (3) a close spatial relation between polycyclic aromatic hydrocarbon (PAH) and molecular gas emission, but no predictive power of PAH emission for the molecular gas mass; (4) that the I-H color map is an excellent predictor of the distribution (and to a lesser degree, the brightness) of CO emission; and (5) that the impact of massive (UV-intense) young star-forming regions on the bulk of the molecular gas in central similar to 9 kpc cannot be significant due to a complex spatial relation between molecular gas and star-forming regions that ranges from cospatial to spatially offset to absent. The last point, in particular, highlights the importance of galactic environment-and thus the underlying gravitational potential-for the distribution of molecular gas and star formation.


The Astrophysical Journal | 2014

THE PdBI ARCSECOND WHIRLPOOL SURVEY (PAWS): ENVIRONMENTAL DEPENDENCE OF GIANT MOLECULAR CLOUD PROPERTIES IN M51*

Dario Colombo; Annie Hughes; E. Schinnerer; Sharon E. Meidt; Adam K. Leroy; J. Pety; Clare L. Dobbs; Santiago Garcia-Burillo; Gaelle Dumas; Todd A. Thompson; Karl Schuster; C. Kramer

Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic giant molecular cloud (GMC) catalog to date, containing 1507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12CO(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that ~30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power-law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high-mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51s inner disk.


The Astrophysical Journal | 2013

Gas Kinematics on Giant Molecular Cloud Scales in M51 with PAWS: Cloud Stabilization through Dynamical Pressure

Sharon E. Meidt; E. Schinnerer; Santiago Garcia-Burillo; Annie Hughes; Dario Colombo; J. Pety; Clare L. Dobbs; Karl Schuster; C. Kramer; Adam K. Leroy; Gaelle Dumas; Todd A. Thompson

We use the high spatial and spectral resolution of the PAWS CO(1-0) survey of the inner 9 kpc of the iconic spiral galaxy M51 to examine the effects of gas streaming motions on the star-forming properties of individual giant molecular clouds (GMCs). We compare our view of gas flows in M51--which arise due to departures from axisymmetry in the gravitational potential (i.e., the nuclear bar and spiral arms)--with the global pattern of star formation as traced by Hα and 24 μm emission. We find that the dynamical environment of GMCs strongly affects their ability to form stars, in the sense that GMCs situated in regions with large streaming motions can be stabilized, while similarly massive GMCs in regions without streaming go on to efficiently form stars. We argue that this is the result of reduced surface pressure felt by clouds embedded in an ambient medium undergoing large streaming motions, which prevent collapse. Indeed, the variation in gas depletion time expected based on the observed streaming motions throughout the disk of M51 quantitatively agrees with the variation in the observed gas depletion time scale. The example of M51 shows that streaming motions, triggered by gravitational instabilities in the form of bars and spiral arms, can alter the star formation law; this can explain the variation in gas depletion time among galaxies with different masses and morphologies. In particular, we can explain the long gas depletion times in spiral galaxies compared with dwarf galaxies and starbursts. We suggest that adding a dynamical pressure term to the canonical free-fall time produces a single star formation law that can be applied to all star-forming regions and galaxies across cosmic time.


Monthly Notices of the Royal Astronomical Society | 2010

Physical properties of giant molecular clouds in the Large Magellanic Cloud

Annie Hughes; Tony Wong; Jürgen Ott; Erik Muller; Jorge L. Pineda; Yoji Mizuno; J.-P. Bernard; D. Paradis; Sarah T. Maddison; William T. Reach; Lister Staveley-Smith; Akiko Kawamura; Margaret M. Meixner; Sungeun Kim; Toshikazu Onishi; Norikazu Mizuno; Yasuo Fukui

The Magellanic Mopra Assessment (MAGMA) is a high angular resolution ^(12)CO (J = 1 → 0) mapping survey of giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud using the Mopra Telescope. Here we report on the basic physical properties of 125 GMCs in the LMC that have been surveyed to date. The observed clouds exhibit scaling relations that are similar to those determined for Galactic GMCs, although LMC clouds have narrower linewidths and lower CO luminosities than Galactic clouds of a similar size. The average mass surface density of the LMC clouds is 50 M_⊙ pc^(−2), approximately half that of GMCs in the inner Milky Way. We compare the properties of GMCs with and without signs of massive star formation, finding that non-star-forming GMCs have lower peak CO brightness than star-forming GMCs. We compare the properties of GMCs with estimates for local interstellar conditions: specifically, we investigate the H i column density, radiation field, stellar mass surface density and the external pressure. Very few cloud properties demonstrate a clear dependence on the environment; the exceptions are significant positive correlations between (i) the H i column density and the GMC velocity dispersion, (ii) the stellar mass surface density and the average peak CO brightness and (iii) the stellar mass surface density and the CO surface brightness. The molecular mass surface density of GMCs without signs of massive star formation shows no dependence on the local radiation field, which is inconsistent with the photoionization-regulated star formation theory proposed by McKee. We find some evidence that the mass surface density of the MAGMA clouds increases with the interstellar pressure, as proposed by Elmegreen, but the detailed predictions of this model are not fulfilled once estimates for the local radiation field, metallicity and GMC envelope mass are taken into account.


Astronomy and Astrophysics | 2010

Determining dust temperatures and masses in the Herschel era: The importance of observations longward of 200 micron

Karl D. Gordon; F. Galliano; S. Hony; J.-P. Bernard; Alberto D. Bolatto; Caroline Bot; C. W. Engelbracht; Annie Hughes; F. P. Israel; F. Kemper; Sungeun Kim; Aigen Li; S. Madden; Mikako Matsuura; Margaret M. Meixner; Karl Anthony Misselt; K. Okumura; P. Panuzzo; M. Rubio; William T. Reach; Julia Roman-Duval; M. Sauvage; Ramin A. Skibba; A. G. G. M. Tielens

Context. The properties of the dust grains (e.g., temperature and mass) can be derived from fitting far-IR SEDs (≥100 μm). Only with SPIRE on Herschel has it been possible to get high spatial resolution at 200 to 500 μm that is beyond the peak (~160 μm) of dust emission in most galaxies. Aims. We investigate the differences in the fitted dust temperatures and masses determined using only 200 μm data (new SPIRE observations) to determine how important having >200 μm data is for deriving these dust properties. Methods. We fit the 100 to 350 μm observations of the Large Magellanic Cloud (LMC) point-by-point with a model that consists of a single temperature and fixed emissivity law. The data used are existing observations at 100 and 160 μm (from IRAS and Spitzer) and new SPIRE observations of 1/4 of the LMC observed for the HERITAGE key project as part of the Herschel science demonstration phase. Results. The dust temperatures and masses computed using only 100 and 160 μm data can differ by up to 10% and 36%, respectively, from those that also include the SPIRE 250 & 350 μm data. We find that an emissivity law proportional to λ^(−1.5) minimizes the 100–350 μm fractional residuals. We find that the emission at 500 μm is ~10% higher than expected from extrapolating the fits made at shorter wavelengths. We find the fractional 500 μm excess is weakly anti-correlated with MIPS 24 μm flux and the total gas surface density. This argues against a flux calibration error as the origin of the 500 μm excess. Our results do not allow us to distinguish between a systematic variation in the wavelength dependent emissivity law or a population of very cold dust only detectable at λ ≥ 500 μm for the origin of the 500 μm excess.


The Astrophysical Journal | 2013

A COMPARATIVE STUDY OF GIANT MOLECULAR CLOUDS IN M51, M33, AND THE LARGE MAGELLANIC CLOUD

Annie Hughes; Sharon E. Meidt; Dario Colombo; E. Schinnerer; J. Pety; Adam K. Leroy; Clare L. Dobbs; Santiago Garcia-Burillo; Todd A. Thompson; Gaelle Dumas; Karl Schuster; C. Kramer

We compare the properties of giant molecular clouds (GMCs) in M51 identified by the Plateau de Bure Interferometer Whirlpool Arcsecond Survey with GMCs identified in wide-field, high-resolution surveys of CO emission in M33 and the Large Magellanic Cloud (LMC). We find that GMCs in M51 are larger, brighter, and have higher velocity dispersions relative to their sizes than equivalent structures in M33 and the LMC. These differences imply that there are genuine variations in the average mass surface density of the different GMC populations. To explain this, we propose that the pressure in the interstellar medium surrounding the GMCs plays a role in regulating their density and velocity dispersion. We find no evidence for a correlation between size and linewidth in M51, M33, or the LMC when the CO emission is decomposed into GMCs, although moderately robust correlations are apparent when regions of contiguous CO emission (with no size limitation) are used. Our work demonstrates that observational bias remains an important obstacle to the identification and study of extragalactic GMC populations using CO emission, especially in molecule-rich galactic environments.


Astronomy and Astrophysics | 2007

Investigating grain growth in disks around southern T Tauri stars at millimetre wavelengths

Dave Lommen; Christopher M. Wright; Sarah T. Maddison; Jes K. Jorgensen; Tyler L. Bourke; E. F. van Dishoeck; Annie Hughes; David J. Wilner; Michael G. Burton; H. J. van Langevelde

Received ?? ; Accepted ?? Abstract. Low-mass stars form with disks in which the coagulation of grains may eventually lead to the formation of planets. It is not known when and where grain growth occurs, as models that explain the observations are often degenerate. A way to break this degeneracy is to resolve the sources under study.


The Astrophysical Journal | 2014

Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submillimeter Excess Emission

Karl D. Gordon; Julia Roman-Duval; Caroline Bot; Margaret M. Meixner; B. L. Babler; J.-P. Bernard; Alberto D. Bolatto; Martha L. Boyer; Geoffrey C. Clayton; C. W. Engelbracht; Yasuo Fukui; M. Galametz; F. Galliano; Sacha Hony; Annie Hughes; Remy Indebetouw; F. P. Israel; Katherine Jameson; Akiko Kawamura; V. Lebouteiller; Aigen Li; S. Madden; Mikako Matsuura; Karl Anthony Misselt; Edward Montiel; K. Okumura; Toshikazu Onishi; P. Panuzzo; D. Paradis; M. Rubio

The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 105 and (8.3 ± 2.1) × 104 M ☉ for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

Collaboration


Dive into the Annie Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Pety

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge L. Pineda

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kramer

University of Cologne

View shared research outputs
Researchain Logo
Decentralizing Knowledge