Annie Mougin
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annie Mougin.
Journal of Molecular Biology | 2002
Virginie Marchand; Agnès Méreau; Sandrine Jacquenet; Denise Thomas; Annie Mougin; Renata Gattoni; James Stévenin; Christiane Branlant
Retroviral protein production depends upon alternative splicing of the viral transcript. The HIV-1 acceptor site A7 is required for tat and rev mRNA production. Production of the Tat transcriptional activator is highly controlled because of its apoptotic properties. Two silencer elements (ESS3 and ISS) and two enhancer elements (ESE2 and ESE3/(GAA)3) were previously identified at site A7. hnRNP A1 binds ISS and ESS3 and is involved in the inhibitory process, ASF/SF2 activates site A7 utilisation. Here, by using chemical and enzymatic probes we established the 2D structure of the HIV-1(BRU) RNA region containing site A7 and identified the RNA segments protected in nuclear extract and by purified hnRNP A1. ISS, ESE3/(GAA)3 and ESS3 are located in three distinct stem-loop structures (SLS1, 2 and 3). As expected, hnRNP A1 binds sites 1, 2 and 3 of ISS and ESS3b, and oligomerises on the polypurine sequence upstream of ESS3b. In addition, we discovered an unidentified hnRNP A1 binding site (AUAGAA), that overlaps ESE3/(GAA)3. On the basis of competition experiments, hnRNP A1 has a stronger affinity for this site than for ESS3b. By insertion of (GAA)3 alone or preceded by the AUA trinucleotide in a foreign context, the AUAGAA sequence was found to modulate strongly the (GAA)3 splicing enhancer activity. Cross-linking experiments on these heterologous RNAs and the SLS2-SLS3 HIV-1 RNA region, in nuclear extract and with recombinant proteins, showed that binding of hnRNP A1 to AUA(GAA)3 strongly competes the association of ASF/SF2 with (GAA)3. In addition, disruption of AUA(GAA)3 demonstrated a key role of this sequence in hnRNP A1 cooperative binding to the ISS and ESS3b inhibitors and hnRNP A1 oligomerisation on the polypurine sequence. Thus, depending on the cellular context ([ASF/SF2]/[hnRNP A1] ratio), AUA(GAA)3 will activate or repress site A7 utilisation and can thus be considered as a Janus splicing regulator.
The EMBO Journal | 2010
Julien Soudet; Jean-Paul Gélugne; Kamila Belhabich-Baumas; Michèle Caizergues-Ferrer; Annie Mougin
It is generally assumed that, in Saccharomyces cerevisiae, immature 40S ribosomal subunits are not competent for translation initiation. Here, we show by different approaches that, in wild‐type conditions, a portion of pre‐40S particles (pre‐SSU) associate with translating ribosomal complexes. When cytoplasmic 20S pre‐rRNA processing is impaired, as in Rio1p‐ or Nob1p‐depleted cells, a large part of pre‐SSUs is associated with translating ribosomes complexes. Loading of pre‐40S particles onto mRNAs presumably uses the canonical pathway as translation‐initiation factors interact with 20S pre‐rRNA. However, translation initiation is not required for 40S ribosomal subunit maturation. We also provide evidence suggesting that cytoplasmic 20S pre‐rRNAs that associate with translating complexes are turned over by the no go decay (NGD) pathway, a process known to degrade mRNAs on which ribosomes are stalled. We propose that the cytoplasmic fate of 20S pre‐rRNA is determined by the balance between pre‐SSU processing kinetics and sensing of ribosome‐like particles loaded onto mRNAs by the NGD machinery, which acts as an ultimate ribosome quality check point.
Nucleic Acids Research | 2012
Caroline Lacoux; Daniele Di Marino; Pietro Pilo Boyl; Francesca Zalfa; Bing Yan; Maria Teresa Ciotti; Mattia Falconi; Henning Urlaub; Tilmann Achsel; Annie Mougin; Michèle Caizergues-Ferrer; Claudia Bagni
The brain cytoplasmic RNA, BC1, is a small non-coding RNA that is found in different RNP particles, some of which are involved in translational control. One component of BC1-containing RNP complexes is the fragile X mental retardation protein (FMRP) that is implicated in translational repression. Peptide mapping and computational simulations show that the tudor domain of FMRP makes specific contacts to BC1 RNA. Endogenous BC1 RNA is 2′-O-methylated in nucleotides that contact the FMRP interface, and methylation can affect this interaction. In the cell body BC1 2′-O-methylations are present in both the nucleus and the cytoplasm, but they are virtually absent at synapses where the FMRP–BC1–mRNA complex exerts its function. These results strongly suggest that subcellular region-specific modifications of BC1 affect the binding to FMRP and the interaction with its mRNA targets. We finally show that BC1 RNA has an important role in translation of certain mRNAs associated to FMRP. All together these findings provide further insights into the translational regulation by the FMRP–BC1 complex at synapses.
RNA Biology | 2012
Kamila Baumas; Julien Soudet; Michèle Caizergues-Ferrer; Marlène Faubladier; Yves Henry; Annie Mougin
Maturation of the 40S ribosomal subunit precursors in mammals mobilizes several non-ribosomal proteins, including the atypical protein kinase RioK2. Here, we have investigated the involvement of another member of the RIO kinase family, RioK3, in human ribosome biogenesis. RioK3 is a cytoplasmic protein that does not seem to shuttle between nucleus and cytoplasm via a Crm1-dependent mechanism as does RioK2 and which sediments with cytoplasmic 40S ribosomal particles in a sucrose gradient. When the small ribosomal subunit biogenesis is impaired by depletion of either rpS15, rpS19 or RioK2, a concomitant decrease in the amount of RioK3 is observed. Surprisingly, we observed a dramatic and specific increase in the levels of RioK3 when the biogenesis of the large ribosomal subunit is impaired. A fraction of RioK3 is associated with the non ribosomal pre-40S particle components hLtv1 and hEnp1 as well as with the 18S-E pre-rRNA indicating that it belongs to a bona fide cytoplasmic pre-40S particle. Finally, RioK3 depletion leads to an increase in the levels of the 21S rRNA precursor in the 18S rRNA production pathway. Altogether, our results strongly suggest that RioK3 is a novel cytoplasmic component of pre-40S pre-ribosomal particle(s) in human cells, required for normal processing of the 21S pre-rRNA.
Molecular Microbiology | 2005
Vincent Bardey; Corinne Vallet; Nathalie Robas; Bruno Charpentier; Benoit Thouvenot; Annie Mougin; Eliane Hajnsdorf; Philippe Régnier; Mathias Springer; Christiane Branlant
A gapA‐pgk gene tandem coding the glyceraldehyde 3‐phosphate dehydrogenase and 3‐phosphoglycerate kinase, is most frequently found in bacteria. However, in Enterobacteriaceae, gapA is replaced by an epd open reading frame (ORF) coding an erythrose‐4‐phosphate dehydrogenase and an fbaA ORF coding the class II fructose‐1,6‐bisphosphate aldolase follows pgk. Although epd expression is very low in Escherichia coli, we show that, in the presence of glucose, the 3 epd, pgk and fbaA ORFs are efficiently cotranscribed from promoter epd P0. Conservation of promoter epd P0 is likely due to its important role in modulation of the metabolic flux during glycolysis and gluconeogenesis. As a consequence, we found that the epd translation initiation region and ORF have been adapted in order to limit epd translation and to create an efficient RNase E entry site. We also show that fbaA is cotranscribed with pgk, from promoter epd P0 or an internal pgk P1 promoter of the extended ‐10 class. The differential expression of pgk and fbaA also depends upon an RNase E segmentation process, leading to individual mRNAs with different stabilities. The secondary structures of the RNA regions containing the RNase E sites were experimentally determined which brings important information on the structural features of RNase E ectopic sites.
Biochimie | 1997
Gábor Jakab; Annie Mougin; M. Kis; Tamás Pollák; Mária Antal; Christiane Branlant; Ferenc Solymosy
The spliceosomal UsnRNAs U2, U4 and U6 from the green alga Chlamydomonas reinhardtii (Cre) were sequenced using a combination of RNA and cDNA sequencing methods and were compared to other sequenced UsnRNAs. The lengths of Cre U6 and Cre U2 RNAs are similar to those of their higher plant equivalents. Cre U4 RNA is shorter (139 nt) than its counterpart from higher plants (150-154 nt), and contains stem IV and loop D which are absent, with the exception of the Tetrahymena U4 RNA, from the U4 RNAs of other unicellular organisms studied to date. Base-pairing interactions between U6 and U4 RNAs and between U6 and U2 RNAs, identical to those described for mammalian and yeast systems, are structurally feasible in the Cre system. In addition, based on comparative analyses of the predicted U4/U6 RNA duplex from various species, an evolutionary conserved third putative U6-U4 interaction was found. Interestingly, it can also be formed with the recently discovered U6atac and U4atac RNAs. This is a strong support in favor of the possible biological significance of this third putative interaction. Based on comparative analysis, an extension of the earlier described U6-U2 interaction patterns is also proposed.
Nucleic Acids Research | 2011
Aileen Bar; Virginie Marchand; Georges Khoury; Natacha Dreumont; Annie Mougin; Nathalie Robas; James Stévenin; Athanase Visvikis; Christiane Branlant
Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5′-part is considered as an ESE binding SR proteins. Its 3′-part contains a decoy 5′-splice site (ss), which inhibits splicing at the bona fide 5′-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity.
Journal of Molecular Biology | 1997
Agnès Méreau; Régis Fournier; Anne Grégoire; Annie Mougin; Patrizia Fabrizio; Reinhard Lührmann; Christiane Branlant
Archive | 1998
Séverine Massenet; Annie Mougin; Christiane Branlant
RNA | 1996
Annie Mougin; A Grégoire; J Banroques; Véronique Ségault; Régis Fournier; Fabienne Brulé; M Chevrier-Miller; Christiane Branlant