Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annie Quignard-Boulangé is active.

Publication


Featured researches published by Annie Quignard-Boulangé.


The FASEB Journal | 2001

Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation

Florence Massiera; May Bloch-Faure; Debbie Ceiler; Kazuo Murakami; Akiyoshi Fukamizu; Jean-Marie Gasc; Annie Quignard-Boulangé; Raymond Negrel; Gérard Ailhaud; Josiane Seydoux; Pierre Meneton; Michèle Teboul

White adipose tissue and liver are important angiotensinogen (AGT) production sites. Until now, plasma AGT was considered to be a reflection of hepatic production. Because plasma AGT concentration has been reported to correlate with blood pressure, and to be associated with body mass index, we investigated whether adipose AGT is released locally and into the blood stream. For this purpose, we have generated transgenic mice either in which adipose AGT is overexpressed or in which AGT expression is restricted to adipose tissue. This was achieved by the use of the aP2 adipocyte‐specific promoter driving the expression of rat agt cDNA in both wild‐type and hypotensive AGT‐deficient mice. Our results show that in both genotypes, targeted expression of AGT in adipose tissue increases fat mass. Mice whose AGT expression is restricted to adipose tissue have AGT circulating in the blood stream, are normotensive, and exhibit restored renal function compared with AGT‐deficient mice. Moreover, mice that overexpress adipose AGT have increased levels of circulating AGT, compared with wild‐type mice, and are hypertensive. These animal models demonstrate that AGT produced by adipose tissue plays a role in both local adipose tissue development and in the endocrine system, which supports a role of adipose AGT in hypertensive obese patients.


Endocrinology | 2001

Angiotensinogen-Deficient Mice Exhibit Impairment of Diet-Induced Weight Gain with Alteration in Adipose Tissue Development and Increased Locomotor Activity

Florence Massiera; Josiane Seydoux; Alain Geloen; Annie Quignard-Boulangé; Sophie Turban; Perla Saint-Marc; Akiyoshi Fukamizu; Raymond Negrel; Gérard Ailhaud; Michèle Teboul

White adipose tissue is known to contain the components of the renin-angiotensin system, which gives rise to angiotensin II from angiotensinogen (AGT). Recent evidence obtained in vitro and ex vivo is in favor of angiotensin II acting as a trophic factor of adipose tissue development. To determine whether AGT plays a role in vivo in this process, comparative studies were performed in AGT-deficient (agt−/−) mice and control wild-type mice. The results showed that agt−/− mice gain less weight than wild-type mice in response to a chow or high fat diet. Adipose tissue mass from weaning to adulthood appeared altered rather specifically, as both the size and the weight of other organs were almost unchanged. Food intake was similar for both genotypes, suggesting a decreased metabolic efficiency in agt−/− mice. Consistent with this hypothesis, cellularity measurement indicated hypotrophy of adipocytes in agt−/− mice with a parallel decrease in the fatty acid synthase activity. Moreover, AGT-deficient mice exhibit...


Kidney International | 2011

Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity

Laurent Yvan-Charvet; Annie Quignard-Boulangé

Obesity is a leading cause of death worldwide because of its associated inflammatory disorders such as hypertension, cardiovascular and kidney diseases, dyslipidemia, glucose intolerance, and certain types of cancer. Adipose tissue expresses all components of the renin-angiotensin system necessary to generate angiotensin (Ang) peptides for local function. The angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the effect of Ang II and recent studies have shown that both receptors may modulate fat mass expansion through upregulation of adipose tissue lipogenesis (AT2) and downregulation of lipolysis (AT1). Thus, both receptors may have synergistic and additive effects to promote the storage of lipid in adipose tissue in response to the nutrient environment. The production of angiotensinogen (AGT) by adipose tissue in rodents also contributes to one third of the circulating AGT levels. Increased adipose tissue AGT production in the obese state may be responsible in part for the metabolic and inflammatory disorders associated with obesity. This supports the notion that besides the traditional role of Ang II produced by the liver in the control of blood pressure, Ang II produced by the adipose tissue may more accurately reflect the role of this hormone in the regulation of fat mass and associated disorders.


Molecular Psychiatry | 2007

Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment

Julie Minet-Ringuet; Patrick C. Even; P Valet; C Carpéné; V Visentin; D Prévot; D Daviaud; Annie Quignard-Boulangé; Daniel Tomé; R de Beaurepaire

Although antipsychotics are established drugs in schizophrenia treatment, they are admittedly known to induce side effects favoring the onset of obesity and worsening its complications. Despite potential involvement of histamine receptor antagonism, or of other neurotransmitter systems, the mechanism by which antipsychotic drugs increase body weight is not elucidated. The aim of the present study was to investigate whether chronic antipsychotic treatments can directly alter the regulation of two main functions of white adipose tissue: lipolysis and glucose utilization. The influence of a classical antipsychotic (haloperidol) was compared to that of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (ziprasidone). Cell size, lipolytic capacity and glucose transport activity were determined in white adipocytes of rats subjected to 5-week oral treatment with these antipsychotics. Gene expression of adipocyte proteins involved in glucose transport or fat storage and mobilization, such as glucose transporters (GLUT1 and GLUT4), leptin, matrix metallo-proteinase-9 (MMP9), hormone-sensitive lipase (HSL) and fatty acid synthase (FAS) was also evaluated. Adipocytes from chronic olanzapine-treated rats exhibited decreased lipolytic activity, lowered HSL expression and increased FAS expression. These changes were concomitant to enlarged fat deposition and adipocyte size. Alterations were observed in adipocytes from olanzapine-treated rats whereas the other antipsychotics did not induce any notable disorder. Our results therefore show evidence of an effect of chronic antipsychotic treatment on rat adipocyte metabolism. Thus, impairment of fat cell lipolysis should be considered as a side effect of certain antipsychotics, leading, along with the already documented hyperphagia, to the excessive weight gain observed in patients under prolonged treatment.


BioMed Research International | 2006

The Adipose Renin-Angiotensin System Modulates Systemic Markers of Insulin Sensitivity and Activates the Intrarenal Renin-Angiotensin System

Suyeon Kim; Morvarid Soltani-Bejnood; Annie Quignard-Boulangé; Florence Massiera; Michèle Teboul; Gérard Ailhaud; Jung Han Kim; Naima Moustaid-Moussa; Brynn H. Voy

Background. The adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass and may also impact systemic functions such as blood pressure and metabolism. Methods and results. A panel of mouse models including mice lacking angiotensinogen, Agt (Agt-KO), mice expressing Agt solely in adipose tissue (aP2-Agt/Agt-KO), and mice overexpressing Agt in adipose tissue (aP2-Agt) was studied. Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin, and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. aP2-Agt mice exhibited increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also elevated in kidney of aP2-Agt mice. Conclusion. These findings demonstrate that alterations in adipose RAS activity significantly impact both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.


Obesity | 2012

Overproduction of angiotensinogen from adipose Tissue Induces adipose Inflammation, Glucose Intolerance, and Insulin Resistance

Nishan S. Kalupahana; Florence Massiera; Annie Quignard-Boulangé; Gérard Ailhaud; Brynn H. Voy; David H. Wasserman; Naima Moustaid-Moussa

Although obesity is associated with overactivation of the white adipose tissue (WAT) renin‐angiotensin system (RAS), a causal link between the latter and systemic insulin resistance is not established. We tested the hypothesis that overexpression of angiotensinogen (Agt) from WAT causes systemic insulin resistance via modulation of adipose inflammation. Glucose tolerance, systemic insulin sensitivity, and WAT inflammatory markers were analyzed in mice overexpressing Agt in the WAT (aP2‐Agt mice). Proteomic studies and in vitro studies using 3T3‐L1 adipocytes were performed to build a mechanistic framework. Male aP2‐Agt mice exhibited glucose intolerance, insulin resistance, and lower insulin‐stimulated glucose uptake by the skeletal muscle. The difference in glucose tolerance between genotypes was normalized by high‐fat (HF) feeding, and was significantly improved by treatment with angiotensin‐converting enzyme (ACE) inhibitor captopril. aP2‐Agt mice also had higher monocyte chemotactic protein‐1 (MCP‐1) and lower interleukin‐10 (IL‐10) in the WAT, indicating adipose inflammation. Proteomic studies in WAT showed that they also had higher monoglyceride lipase (MGL) and glycerol‐3‐phosphate dehydrogenase levels. Treatment with angiotensin II (Ang II) increased MCP‐1 and resistin secretion from adipocytes, which was prevented by cotreating with inhibitors of the nuclear factor‐κB (NF‐κB) pathway or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In conclusion, we show for the first time that adipose RAS overactivation causes glucose intolerance and systemic insulin resistance. The mechanisms appear to be via reduced skeletal muscle glucose uptake, at least in part due to Ang II‐induced, NADPH oxidase and NFκB‐dependent increases in WAT inflammation.


Endocrinology | 2009

Deficiency of Angiotensin Type 2 Receptor Rescues Obesity But Not Hypertension Induced by Overexpression of Angiotensinogen in Adipose Tissue

Laurent Yvan-Charvet; Florence Massiera; Noël Lamandé; Gérard Ailhaud; Michèle Teboul; Naima Moustaid-Moussa; Jean-Marie Gasc; Annie Quignard-Boulangé

Increased angiotensinogen (AGT) production by white adipose tissue has been related to not only obesity but also hypertension. Several studies have highlighted the importance of the angiotensin II type 2 receptor (AT2) in the regulation of blood pressure and fat mass, but the relevance of this transporter in a physiopathological model of increased AGT production, as it occurs in obesity, has not yet been investigated. We used transgenic mice that display either a deletion of AT2 (AT2 KO), an overexpression of AGT (OVEX), or both compound mutants (KOVEX). Results demonstrated that adipocyte hypertrophy and increased lipogenic gene expression induced by adipose AGT overproduction was rescued by deletion of AT2. In line with AGT overexpression, KOVEX and OVEX mice have similar increased plasma AGT levels. However, KOVEX mice display a higher blood pressure than OVEX mice. In kidney, renin expression was clearly reduced in OVEX mice, and its expression was normalized in KOVEX mice. Taken together, we demonstrated that the loss of AT2 expression was sufficient to rescue obesity induced by adipose tissue AGT overexpression and confirmed the necessary role of AT2 for the onset of obesity in this model. Furthermore, despite a reduction of adipose mass in KOVEX, AT2 deficiency caused increased renin production, further worsening the hypertension caused by AGT overexpression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

In Vivo Evidence for a Role of Adipose Tissue SR-BI in the Nutritional and Hormonal Regulation of Adiposity and Cholesterol Homeostasis

Laurent Yvan-Charvet; Alexandre Bobard; Pascale Bossard; Florence Massiera; Xavier Rousset; Gérard Ailhaud; Michèle Teboul; Pascal Ferré; Georges Dagher; Annie Quignard-Boulangé

Objectives—This study examines the role of insulin and angiotensin II in high-density lipoprotein (HDL) metabolism by focusing on the regulation and function of scavenger receptor type-BI (SR-BI) in adipose tissue. Methods and Results—Insulin or angiotensin II injection in wild-type mice induced a decrease in circulating HDL and it was associated with the translocation of SR-BI from intracellular sites to the plasma membrane of adipose tissue. Refeeding upregulated adipose HDL selective cholesteryl esters uptake and SR-BI proteins through transcriptional and posttranscriptional mechanisms. This occurred along with a decrease in serum HDL and an increase in adipose cholesterol content. Similar results were obtained with transgenic mice overexpressing locally angiotensinogen in adipose tissue. In adipose 3T3-L1 cell line, HDL induced lipogenesis by increasing liver X receptor binding activity. This mechanism was dependent of insulin and angiotensin II. Conclusions—Our results raise the possibility that adipose tissue SR-BI translocation might be a link between adipose tissue lipid storage and HDL clearance.


Journal of Nutritional Biochemistry | 2012

n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-κB-dependent mechanisms

Nalin Siriwardhana; Nishan S. Kalupahana; Sarah Fletcher; Wenting Xin; Kate J. Claycombe; Annie Quignard-Boulangé; Ling Zhao; Arnold M. Saxton; Naima Moustaid-Moussa

Excessive secretion of proinflammatory adipokines has been linked to metabolic disorders. We have previously documented anti-inflammatory effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) in adipose tissue; however, the mechanisms by which these fatty acids regulate adipokine secretion remain unclear. Here, we determined differential effects of eicosapentaenoic acid (EPA, n-3 PUFA) vs. arachidonic acid (AA, n-6 PUFA) on expression and secretion of angiotensinogen (Agt), interleukin 6 (IL-6) and monocyte chemotactic protein (MCP-1) in 3T3-L1 adipocytes. While both PUFAs increased intracellular Agt protein and mRNA expression, Agt secretion into culture media was increased only by AA treatment, which in turn was prevented by co-treatment with EPA. At various AA/EPA ratios, increasing AA concentrations significantly increased secretion of the above three adipokines, whereas increasing EPA dose-dependently, while lowering AA, decreased their secretion. Moreover, IL-6 and MCP-1 were more significantly reduced by EPA treatment compared to Agt (IL-6>MCP>Agt). Next, we tested whether nuclear factor-κB (NF-κB), a major proinflammatory transcription factor, was involved in regulation of these adipokines by PUFAs. EPA significantly inhibited NF-κB activation compared to control or AA treatments. Moreover, EPA attenuated tumor necrosis factor-α-induced MCP-1 and further reduced its secretion in the presence of an NF-κB inhibitor. Taken together, we reported here novel beneficial effects of EPA in adipocytes. We demonstrated direct anti-inflammatory effects of EPA, which are at least in part due to the inhibitory effects of this n-3 PUFA on the NF-κB pathway in adipocytes. In conclusion, these studies further support beneficial effects of n-3 PUFAs in adipocyte inflammation and metabolic disorders.


Gene | 1992

Sequence of rat lipoprotein lipase-encoding cDNA

Didier Brault; Lydie Noé; Jacqueline Etienne; Jocelyne Hamelin; Alain Raisonnier; Aziz Souli; Jean-Claude Chuat; Isabelle Dugail; Annie Quignard-Boulangé; M Lavau; Francis Galibert

A rat lipoprotein lipase (LPL)-encoding cDNA (LPL) has been entirely sequenced and compared to the sequences of all the LPL cDNAs reported in other species. As expected, high homology was found between the coding exons. The putative catalytic triad, Ser132, Asp156, His241, according to human numbering, is conserved in rat. As is the case in mouse, an Asn444 present in human LPL is also missing. The major divergences between human, mouse and rat LPLs were observed in the untranslated exon 10, where (i) the rat cDNA exhibits a 157-bp insertion and an 81-bp deletion relative to human; (ii) neither the B1 repeat nor the homopurine stretch reported in mouse can be recognized, and (iii) the rat cDNA displays several A+T-rich stretches.

Collaboration


Dive into the Annie Quignard-Boulangé's collaboration.

Top Co-Authors

Avatar

Gérard Ailhaud

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Florence Massiera

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Sophie Foucault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michèle Teboul

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Stanislas Veillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Brynn H. Voy

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge