Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Annie R. Lindgren is active.

Publication


Featured researches published by Annie R. Lindgren.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Evidence for a clade composed of molluscs with serially repeated structures: Monoplacophorans are related to chitons

Gonzalo Giribet; Akiko Okusu; Annie R. Lindgren; Stephanie W. Huff; Michael Schrödl; Michele K. Nishiguchi

Monoplacophorans are among the rarest members of the phylum Mollusca. Previously only known from fossils since the Cambrian, the first living monoplacophoran was discovered during the famous second Galathea deep-sea expedition. The anatomy of these molluscs shocked the zoological community for presenting serially repeated gills, nephridia, and eight sets of dorsoventral pedal retractor muscles. Seriality of organs in supposedly independent molluscan lineages, i.e., in chitons and the deep-sea living fossil monoplacophorans, was assumed to be a relict of ancestral molluscan segmentation and was commonly accepted to support a direct relationship with annelids. We were able to obtain one specimen of a monoplacophoran Antarctic deep-sea species for molecular study. The first molecular data on monoplacophorans, analyzed together with the largest data set of molluscs ever assembled, clearly illustrate that monoplacophorans and chitons form a clade. This “Serialia” concept may revolutionize molluscan systematics and may have important implications for metazoan evolution as it allows for new interpretations for primitive segmentation in molluscs.


Cladistics | 2004

A combined approach to the phylogeny of Cephalopoda (Mollusca)

Annie R. Lindgren; Gonzalo Giribet; Michele K. Nishiguchi

Cephalopoda represents a highly diverse group of molluscs, ranging in habitat from coastal regions to deep benthic waters. While cephalopods remain at the forefront of modern biology, in providing insight into fields such as neurobiology and population genetics, little is known about the relationships within the group. This study provides a comprehensive phylogenetic analysis of Cephalopoda (Mollusca) using a combination of molecular and morphological data. Four loci (three nuclear 18S rRNA, fragments of 28S rRNA and histone H3 and one mitochondrial cytochrome c oxidase subunit I) were combined with 101 morphological characters to test the relationships of 60 species of cephalopods, with emphasis within Decabrachia (squids and cuttlefishes). Individual and combined data sets were analyzed using the direct optimization method, with parsimony as the optimality criterion. Analyses were repeated for 12 different parameter sets accounting for a range of indel/change and transversion/transition cost ratios. Most analyses support the monophyly of Cephalopoda, Nautiloidea, Coleoidea and Decabrachia, however, the monophyly of Octobrachia was refuted due to the lack of support for a Cirroctopoda + Octopoda group. When analyzing all molecular evidence in combination and for total evidence analyses, Vampyromorpha formed the sister group to Decabrachia under the majority of parameters, while morphological data and some individual data sets supported a sister relationship between Vampyromorpha and Octobrachia. Within Decabrachia, a relationship between the sepioids Idiosepiida, Sepiida, Sepiolida and the teuthid Loliginidae was supported. Spirulida fell within the teuthid group in most analyses, further rendering Teuthida paraphyletic. Relationships within Decabrachia and specifically Oegopsida were found to be highly parameter‐dependent.


BMC Evolutionary Biology | 2012

A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment

Annie R. Lindgren; Molly S Pankey; Frederick G. Hochberg; Todd H. Oakley

BackgroundThe marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology.ResultsOur study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively.DiscussionOur study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment.


Reviews in Fish Biology and Fisheries | 2007

A barcode of life database for the Cephalopoda? Considerations and concerns

Jan M. Strugnell; Annie R. Lindgren

The concept of a Barcode of Life Database (BoLD) for the Class Cephalopoda (Phylum Mollusca) was introduced at the Cephalopod International Advisory Council (CIAC) symposium in Hobart, Australia, February 2006. This suggestion was met with significant interest, concern and debate. This review attempts to describe the concept of the BoLD initiative and to outline considerations and concerns specific to a cephalopod BoLD.


Standards in Genomic Sciences | 2012

Cephalopod Genomics: A Plan of Strategies and Organization

Caroline B. Albertin; Laure Bonnaud; C. Titus Brown; Wendy J. Crookes-Goodson; Rute R. da Fonseca; Carlo Di Cristo; Brian P. Dilkes; Eric Edsinger-Gonzales; Robert M. Freeman; Roger T. Hanlon; Kristen M. Koenig; Annie R. Lindgren; Mark Q. Martindale; Patrick Minx; Leonid L. Moroz; Marie-Therese Nödl; Spencer V. Nyholm; Atsushi Ogura; Judit R. Pungor; Joshua J. C. Rosenthal; Erich M. Schwarz; Shuichi Shigeno; Jan M. Strugnell; Tim Wollesen; Guojie Zhang; Clifton W. Ragsdale

The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics-Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24–27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.


Cladistics | 2007

The impact of length‐variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca: Cephalopoda)

Annie R. Lindgren; Marymegan Daly

In molecular phylogenetics, mode of analysis is typically the primary reason cited for obtaining different topologies. However, sequence alignment is as important in determining topology as analytical method or optimality criterion, particularly for length‐variable sequences. We investigate the effect of alignment strategy and parameters in an analysis of length‐variable 18S rDNA sequences from 41 oceanic squids (Decapodiformes), focusing particularly on the impact of including variable regions on the resulting topology. Decapodiformes are an enigmatic group of molluscs whose evolutionary relationships remain unclear because standard molecular analyses have continued to produce poorly supported or poorly resolved trees, possibly due to elevated levels of molecular evolution. We find that alignment strategy (Clustal X versus POY) has a greater affect on topology than does parameter choice. Some groups were robust to shifts in methodology, including cuttlefishes (Sepiidae), bobtail squids (Sepiolidae) and pygmy squids (Idiosepiidae). No alignment strategy supported the monophyly of Oegopsida, although Myopsida did consistently form a monophyletic group. The variable regions consistently provided more well‐supported and well‐resolved trees than the conserved regions alone, indicating the phylogenetic importance of including length‐variable data.


Molecular Phylogenetics and Evolution | 2010

Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid order Oegopsida.

Annie R. Lindgren

Squids, cuttlefish and bobtail squids comprise the molluscan superorder Decapodiformes (Mollusca: Cephalopoda). Although these animals exemplify the morphological and ecological diversity seen in Cephalopoda, no previous study has focused resolving decapodiform relationships, particularly within Oegopsida, a large order comprised of pelagic squid. To further clarify the phylogenetic history of Decapodiformes, and Oegopsida in particular, molecular data for five genes (18S rRNA, 28S rRNA, Histone H3, 16S rRNA, COI) was collected for 90 taxa representing all major lineages and families and evaluated using parsimony, likelihood, and Bayesian analysis. Although ordinal relationships were sensitive to analytical method, several conclusions can be inferred: the pelagic order Myopsida is closely related to the benthic sepioids, whose relationships were ambiguous, and Bathyteuthoidea is distinct from Oegopsida. Within Oegopsida several clades are consistently recovered, some with previous morphological support (e.g. chiroteuthid, lepidoteuthid, histioteuthid families) while others suggest novel relationships (e.g. Architeuthidae+Neoteuthidae). This study, with its broad coverage of taxa, provides the first in-depth analysis of Decapodiformes with special focus on the morphologically and biogeographically diverse Oegopsida, confirms several sister-taxon relationships, and provides new hypotheses of cephalopod evolution in the open ocean.


BMC Bioinformatics | 2014

Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms

Daniel I. Speiser; M. Sabrina Pankey; Alexander K. Zaharoff; Barbara A Battelle; Heather D. Bracken-Grissom; Jesse W. Breinholt; Seth M. Bybee; Thomas W. Cronin; Anders Garm; Annie R. Lindgren; Nipam H. Patel; Megan L. Porter; Meredith E. Protas; Ajna S. Rivera; Jeanne M. Serb; Kirk S. Zigler; Keith A. Crandall; Todd H. Oakley

BackgroundTools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families.ResultsWe generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository (http://bitbucket.org/osiris_phylogenetics/pia/) and we demonstrate PIA on a publicly-accessible web server (http://galaxy-dev.cnsi.ucsb.edu/pia/).ConclusionsOur new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.


Journal of Natural History | 2015

The contribution of molecular data to our understanding of cephalopod evolution and systematics: a review

A. Louise Allcock; Annie R. Lindgren; Jan M. Strugnell

The first DNA sequence of a cephalopod was published in 1983 and the first molecular paper focusing on cephalopods was published in 1994. In this review we trace progress in the field. We examine the placement of Cephalopoda with respect to other molluscan classes and we examine relationships within Cephalopoda. We provide a summary tree of the relationships between cephalopod orders and we examine relationships of taxa within each of these orders. Although much knowledge has been gained over the past 20 years, deeper-level relationships are still not well understood and there is still much scope for further research in this field. Genomic studies are likely to contribute significantly to our knowledge in the future.


Proceedings of the Biological Society of Washington | 2008

Mastigoteuthis microlucens, a new species of the squid family Mastigoteuthidae (Mollusca: Cephalopoda)

Richard Young; Annie R. Lindgren; Michael Vecchione

ABSTRACT We describe a new species, Mastigoteuthis microlucens, of the family Mastigoteuthidae from the tropical North Pacific. Its most distinctive morphological character is the presence of microscopic photophores in the integument. Morphological data indicate that its closest relative is the Atlantic Ocean species Mastigoteuthis magna. Molecular data from three genes, based on four species for which molecular data is available, indicates that Mastigoteuthis microlucens differs from its closest relative, M. magna, by a sufficient degree to substantiate its separate species status.

Collaboration


Dive into the Annie R. Lindgren's collaboration.

Top Co-Authors

Avatar

Todd H. Oakley

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna M. Wolfe

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Vecchione

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Roxana De Silva-Dávila

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge