Annika Flint
University of Ottawa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annika Flint.
BMC Genomics | 2009
Kiran Palyada; Yi-Qian Sun; Annika Flint; James Butcher; Hemant Naikare; Alain Stintzi
BackgroundDuring gut colonization, the enteric pathogen Campylobacter jejuni must surmount the toxic effects of reactive oxygen species produced by its own metabolism, the host immune system, and intestinal microflora. Elucidation of C. jejuni oxidative stress defense mechanisms is critical for understanding Campylobacter pathophysiology.ResultsThe mechanisms of oxidative stress defense in C. jejuni were characterized by transcriptional profiling and phenotypic analysis of wild-type and mutant strains. To define the regulon of the peroxide-sensing regulator, PerR, we constructed an isogenic ΔperR mutant and compared its transcriptome profile with that of the wild-type strain. Transcriptome profiling identified 104 genes that belonged to the PerR regulon. PerR appears to regulate gene expression in a manner that both depends on and is independent of the presence of iron and/or H2O2. Mutation of perR significantly reduced motility. A phenotypic analysis using the chick colonization model showed that the ΔperR mutant exhibited attenuated colonization behavior. An analysis of changes in the transcriptome induced by exposure to H2O2, cumene hydroperoxide, or menadione revealed differential expression of genes belonging to a variety of biological pathways, including classical oxidative stress defense systems, heat shock response, DNA repair and metabolism, fatty acid biosynthesis, and multidrug efflux pumps. Mutagenic and phenotypic studies of the superoxide dismutase SodB, the alkyl-hydroxyperoxidase AhpC, and the catalase KatA, revealed a role for these proteins in oxidative stress defense and chick gut colonization.ConclusionThis study reveals an interplay between PerR, Fur, iron metabolism and oxidative stress defense, and highlights the role of these elements in C. jejuni colonization of the chick cecum and/or subsequent survival.
Journal of Bacteriology | 2012
Annika Flint; Yi-Qian Sun; Alain Stintzi
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.
Infection and Immunity | 2014
Annika Flint; Yi-Qian Sun; James Butcher; Martin Stahl; Hongsheng Huang; Alain Stintzi
ABSTRACT During host colonization, Campylobacter jejuni is exposed to harmful reactive oxygen species (ROS) produced from the host immune system and from the gut microbiota. Consequently, identification and characterization of oxidative stress defenses are important for understanding how C. jejuni survives ROS stress during colonization of the gastrointestinal tract. Previous transcriptomic studies have defined the genes belonging to oxidant stimulons within C. jejuni. We have constructed isogenic deletion mutants of these identified genes to assess their role in oxidative stress survival. Phenotypic screening of 109 isogenic deletion mutants identified 22 genes which were either hypersensitive or hyposensitive to oxidants, demonstrating important roles for these genes in oxidant defense. The significance of these genes in host colonization was also assessed in an in vivo chick model of C. jejuni colonization. Overall, our findings identify an indirect role for motility in resistance to oxidative stress. We found that a nonmotile flagellum mutant, the ΔmotAB mutant, displayed increased sensitivity to oxidants. Restoration of sensitivity to superoxide in the ΔmotAB mutant was achieved by fumarate supplementation or tandem deletion of motAB with ccoQ, suggesting that disruption of the proton gradient across the inner membrane resulted in increased superoxide production in this strain. Furthermore, we have identified genes involved in cation transport and binding, detoxification, and energy metabolism that are also important factors in oxidant defense. This report describes the first isogenic deletion mutant library construction for screening of relevant oxidative stress defense genes within C. jejuni, thus providing a comprehensive analysis of the total set of oxidative stress defenses.
Molecular Microbiology | 2016
Ritika Dwivedi; Harald Nothaft; Jolene Garber; Lin Xin Kin; Martin Stahl; Annika Flint; Arnoud H. M. van Vliet; Alain Stintzi; Christine M. Szymanski
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome‐sequenced strains and is prevalent in livestock‐associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild‐type and the fucP mutant are chemotactic towards fucose. C. jejuni 81‐176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81‐176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc‐). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.
Metallomics | 2013
Hemant Naikare; James Butcher; Annika Flint; Jide Xu; Kenneth N. Raymond; Alain Stintzi
Campylobacter jejuni NCTC11168 does not produce any endogenous siderophores of its own yet requires the CfrA enterobactin transporter for in vivo colonization. In addition, the genome of C. jejuni NCTC11168 contains three distinct TonB energy transduction systems, named TonB1, TonB2, and TonB3, that have not been tested for their role in siderophore uptake or their functional redundancy. We demonstrate that C. jejuni NCTC11168 transports ferric-enterobactin in an energy dependent manner that requires TonB3 for full activity with TonB1 showing partial functional redundancy. Moreover C. jejuni NCTC11168 can utilize a wide variety of structurally different catechol siderophores as sole iron sources during growth. This growth is solely dependent on the CfrA enterobactin transporter and highlights the wide range of substrates that this transporter can recognize. TonB3 is also required for growth on most catechol siderophores. Furthermore, either TonB1 or TonB3 is sufficient for growth on hemin or hemoglobin as a sole iron source demonstrating functional redundancy between TonB1 and TonB3. In vivo colonization assays with isogenic deletion mutants revealed that both TonB1 and TonB3 are required for chick colonization with TonB2 dispensable in this model. These results further highlight the importance of iron transport for efficient C. jejuni colonization.
Microbiology | 2013
Virginie Dufour; Jennifer Li; Annika Flint; Eric Rosenfeld; Katell Rivoal; Sylvie Georgeault; Bachar Alazzam; Gwennola Ermel; Alain Stintzi; Martine Bonnaure-Mallet; Christine Baysse
Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonization. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to encode the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonize 1-day-old chicks. Complementation of the cj1000 mutation restored the colonization ability to wild-type levels. The mutant strain was also outcompeted in a competitive colonization assay of the piglet intestine. Oxygraphy was carried out for what is believed to be the first time with the Oroboros Oxygraph-2k on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonization and in major physiological pathways.
Fems Microbiology Reviews | 2016
Annika Flint; Alain Stintzi; Lígia M. Saraiva
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the worlds population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Frontiers in Microbiology | 2010
Annika Flint; James Butcher; Cyril Clarke; Denver Marlow; Alain Stintzi
Despite the prevalence of Campylobacter jejuni as an important food borne pathogen, the microbial factors governing its infection process are poorly characterized. In this study, we developed a novel rabbit soft tissue chamber model to investigate C. jejuni interactions with its host. The in vivo transcriptome profile of C. jejuni was monitored as a function of time post-infection by competitive microarray hybridization with cDNA obtained from C. jejuni grown in vitro. Genome-wide expression analysis identified 449 genes expressed at significantly different levels in vivo. Genes implicated to play important roles in early colonization of C. jejuni within the tissue chamber include up-regulation of genes involved in ribosomal protein synthesis and modification, heat shock response, and primary adaptation to the host environment (DccSR regulon). Genes encoding proteins involved in the TCA cycle and flagella related components were found to be significantly down-regulated during early colonization. Oxidative stress defense and stringent response genes were found to be maximally induced during the acute infectious phase. Overall, these findings reveal possible mechanisms involved in adaptation of Campylobacter to the host.
Microbiology spectrum | 2016
Annika Flint; James Butcher; Alain Stintzi
Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.
Journal of Bacteriology | 2015
Annika Flint; Alain Stintzi
Catalase enzymes detoxify H2O2 by the dismutation of H2O2 into O2 and H2O through the use of hemin cofactors. While the structure and biochemical properties of catalase enzymes have been well characterized over many decades of research, it remained unclear how catalases acquire hemin. We have previously reported that Cj1386 is essential for ensuring proper hemin content in Campylobacter jejuni catalase (KatA) (A. Flint, Y. Q. Sun, and A. Stintzi, J Bacteriol 194: 334-345, 2012). In this report, an in-depth molecular characterization of Cj1386 was performed to elucidate the mechanistic details of this association. Coimmunoprecipitation assays revealed that KatA-Cj1386 transiently interact in vivo, and UV-visible spectroscopy demonstrated that purified Cj1386 protein binds hemin. Furthermore, hemin titration experiments determined that hemin binds to Cj1386 in a 1:1 ratio with hexacoordinate hemin binding. Mutagenesis of potential hemin-coordinating residues in Cj1386 showed that tyrosine 57 was essential for hemin coordination when Cj1386 was overexpressed in Escherichia coli. The importance of tyrosine 57 in hemin trafficking in vivo was confirmed by introducing the cj1386(Y57A) allele into a C. jejuni Δcj1386 mutant background. The cj1386(Y57A) mutation resulted in increased sensitivity toward H2O2 relative to the wild type, suggesting that KatA was not functional in this strain. In support of this finding, KatA immunoprecipitated from the Δcj1386+cj1386(Y57A) mutant had significantly reduced hemin content compared to that of the cj1386(WT) background. Overall, these findings indicate that Cj1386 is involved in directly trafficking hemin to KatA and that tyrosine 57 plays a key role in this function.