Annike I. Totlandsdal
Norwegian Institute of Public Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annike I. Totlandsdal.
Particle and Fibre Toxicology | 2010
Annike I. Totlandsdal; Flemming R. Cassee; Per E. Schwarze; Magne Refsnes; Marit Låg
BackgroundExposure to diesel engine exhaust particles (DEPs) has been associated with several adverse health outcomes in which inflammation seems to play a key role. DEPs contain a range of different inorganic and organic compounds, including polycyclic aromatic hydrocarbons (PAHs). During the metabolic activation of PAHs, CYP1A1 enzymes are known to play a critical role. In the present study we investigated the potential of a characterised sample of DEPs to induce cytotoxicity, to influence the expression of CYP1A1 and inflammation-related genes, and to activate intracellular signalling pathways, in human bronchial epithelial cells. We specifically investigated to what extent DEP-induced expression of interleukin (IL)-6, IL-8 and cyclooxygenase (COX)-2 was regulated differentially from DEP-induced expression of CYP1A1.ResultsThe cytotoxicity of the DEPs was characterised by a marked time- and concentration-dependent increase in necrotic cells at 4 h and above 200 μg/ml (~ 30 μg/cm2). DEP-induced DNA-damage was only apparent at high concentrations (≥ 200 μg/ml). IL-6, IL-8 and COX-2 were the three most up-regulated genes by the DEPs in a screening of 20 selected inflammation-related genes. DEP-induced expression of CYP1A1 was detected at very low concentrations (0.025 μg/ml), compared to the expression of IL-6, IL-8 and COX-2 (50-100 μg/ml). A CYP1A1 inhibitor (α-naphthoflavone), nearly abolished the DEP-induced expression of IL-8 and COX-2. Of the investigated mitogen-activated protein kinases (MAPKs), the DEPs induced activation of p38. A p38 inhibitor (SB202190) strongly reduced DEP-induced expression of IL-6, IL-8 and COX-2, but only moderately affected the expression of CYP1A1. The DEPs also activated the nuclear factor-κB (NF-κB) pathway, and suppression by siRNA tended to reduce the DEP-induced expression of IL-8 and COX-2, but not CYP1A1.ConclusionThe present study indicates that DEPs induce both CYP1A1 and pro-inflammatory responses in vitro, but via differential intracellular pathways. DEP-induced pro-inflammatory responses seem to occur via activation of NF-κB and p38 and are facilitated by CYP1A1. However, the DEP-induced CYP1A1 response does not seem to involve NF-κB and p38 activation. Notably, the present study also indicates that expression of CYP1A1 may represent a particular sensitive biomarker of DEP-exposure.
Toxicology Letters | 2012
Annike I. Totlandsdal; Jan Inge Herseth; Anette Kocbach Bølling; Alena Kubátová; Artur Braun; Richard E. Cochran; Magne Refsnes; Johan Øvrevik; Marit Låg
Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been associated with lung disease and induction of pro-inflammatory mediators and CYP1A1 expression. The aim of this study was to further characterise DEP-components accounting for these effects. Human bronchial epithelial cells (BEAS-2B) were exposed to either native DEPs, or corresponding methanol DEP-extract or residual DEPs, and investigated with respect to cytotoxicity and expression and release of multiple inflammation-related mediators. Both native DEPs and DEP-extract, but not residual DEPs, induced marked mRNA expression of COX-2, IL-6 and IL-8, as well as cytotoxicity and release of IL-6. However, CYP1A1 was primarily induced by the native and residual DEPs. Overall, the results of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and gas chromatography with mass spectrometry (GC/MS) analysis of DEP-extracts indicated that the majority of the analysed PAHs and PAH-derivatives were extracted from the particles, but that certain PAH-derivatives, probably their carboxylic isomers, tended to be retained on the residual DEPs. Moreover, it appeared that certain components of the methanol extract may suppress CYP1A1 expression. These results provide insight into how different components of the complex DEP-mixture may be differently involved in DEP-induced pro-inflammatory responses and underscore the importance of identifying and clarifying the roles of active DEP-components in relation to different biological effects.
BioMed Research International | 2013
Per E. Schwarze; Annike I. Totlandsdal; Marit Låg; Magne Refsnes; Jørn A. Holme; Johan Øvrevik
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers.
Particle and Fibre Toxicology | 2012
Anette Kocbach Bølling; Annike I. Totlandsdal; Gerd Sallsten; Artur Braun; Roger Westerholm; Christoffer Bergvall; Johan Boman; Hans Jørgen Dahlman; Maria Sehlstedt; Flemming R. Cassee; Thomas Sandström; Per E. Schwarze; Jan Inge Herseth
BackgroundExposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures.ResultsWSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved.ConclusionThe toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Environmental Toxicology | 2015
Annike I. Totlandsdal; Marit Låg; Edel Lilleaas; Flemming R. Cassee; Per E. Schwarze
Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been linked with cellular production and release of several types of mediators related to pulmonary inflammation. A key challenge is to identify the specific components, which may be responsible for these effects. The aim of this study was to compare the proinflammatory potential of two DEP‐samples with contrasting contents of polycyclic aromatic hydrocarbons (PAHs) and metals. The DEP‐samples were compared with respect to their ability to induce cytotoxicity, expression and release of proinflammatory mediators (IL‐6, IL‐8), activation of mitogen‐activated protein kinases (MAPKs) and expression of CYP1A1 and heme oxygenase‐1 (HO‐1) in human bronchial epithelial (BEAS‐2B) cells. In addition, dithiothreitol and ascorbic acid assays were performed in order to examine the oxidative potential of the PM samples. The DEP‐sample with the highest PAH and lowest metal content was more potent with respect to cytotoxicity and expression and release of proinflammatory mediators, CYP1A1 and HO‐1 expression and MAPK activation, than the DEP‐sample with lower PAH and higher metal content. The DEP‐sample with the highest PAH and lowest metal content also possessed a greater oxidative potential. The present results indicate that the content of organic components may be determinant for the proinflammatory effects of DEP. The findings underscore the importance of considering the chemical composition of particulate matter‐emissions, when evaluating the potential health impact and implementation of air pollution regulations.
Environmental Science & Technology | 2013
Miriam E. Gerlofs-Nijland; Annike I. Totlandsdal; Theodoros Tzamkiozis; Daan L. A. C. Leseman; Zissis Samaras; Marit Låg; Per E. Schwarze; Leonidas Ntziachristos; Flemming R. Cassee
The link between emissions of vehicular particulate matter (PM) and adverse health effects is well established. However, the influence of new emission control technologies and fuel types on both PM emissions and health effects has been less well investigated. We examined the health impact of PM emissions from two vehicles equipped with or without a diesel particulate filter (DPF). Both vehicles were powered either with diesel (B0) or a 50% v/v biodiesel blend (B50). The DPF effectively decreased PM mass emissions (∼85%), whereas the fuel B50 without DPF lead to less reduction (∼50%). The hazard of PM per unit distance driven was decreased for the DPF-equipped vehicle as indicated by a reduced cytotoxicity, oxidative, and pro-inflammatory potential. This was not evident and even led to an increase when the hazard was expressed on a per unit of mass basis. In general, the PM oxidative potential was similar or reduced for the B50 compared to the B0 powered vehicle. However, the use of B50 resulted in increased cytotoxicity and IL-6 release in BEAS-2B cells irrespective of the expression metric. This study shows that PM mass reduction achieved by the use of B50 will not necessarily decrease the hazard of engine emissions, while the application of a DPF has a beneficial effect on both PM mass emission and PM hazard.
Toxicological Sciences | 2008
Annike I. Totlandsdal; Magne Refsnes; Tor Skomedal; Jan-Bjørn Osnes; Per E. Schwarze; Marit Låg
Increased levels of particulate matter have been associated with adverse effects in the respiratory as well as the cardiovascular system. The biological mechanisms behind these associations are still unresolved. Among potential mechanisms, particulate matter-associated cardiac effects may be initiated by inhaled small-sized particles, particle components and/or mediators related to inflammation that translocate into the pulmonary circulation. In the present study cytokine responses (interleukin [IL]-6, IL-1beta, and tumor necrosis factor [TNF]-alpha) of primary rat cardiomyocytes and cardiofibroblasts in mono- and cocultures induced by direct exposure to particles, were compared with cytokine responses induced by mediators released by particle-exposed primary rat epithelial lung cells (conditioned media). Cells were exposed to a model ultrafine particle (ultrafine carbon black, Printex 90) and in selected experiments to an urban air particle sample (SRM 1648, St Louis, MO). In lung cell cultures both particle types induced release of IL-6 and IL-1beta, whereas TNF-alpha was only detected upon exposure to St Louis particles. The release of IL-6 by cardiac cells was strongly enhanced upon exposure to conditioned media, and markedly exceeded the response to direct particle exposure. IL-1, but not TNF-alpha, seemed necessary, but not sufficient, for this enhanced IL-6 release. The role of IL-1 was demonstrated by use of an IL-1 receptor antagonist that partially reduced the effect of the conditioned media, and by a stimulating effect on the cardiac cell release of IL-6 by exogenous addition of IL-1alpha and IL-1beta. These in vitro findings lend support to the hypothesis that particle-induced cardiac inflammation and disease may involve lung-derived mediators.
Toxicology | 2008
Annike I. Totlandsdal; Tor Skomedal; Marit Låg; Jan-Bjørn Osnes; Magne Refsnes
Inhalation of particulate air pollution has been associated with increased risks for cardiovascular mortality and morbidity, but the underlying mechanisms are still under discussion. One possible pathway may be that inhaled particles cross the air-blood barrier and interact directly with cardiac tissue. The aim of the present study was to examine the pro-inflammatory potential of particles in cardiac cells. Mono- and co-cultures of primary adult male Wistar (Han) rat cardiomyocytes (CMs) and cardiofibroblasts (CFs) were exposed to increasing concentrations of ultrafine (<100nm) carbon black particles (Printex 90). Expression and release of cytokines (IL-6, IL-1beta and TNF-alpha) were measured by using quantitative real-time PCR and ELISA, respectively. Cytotoxicity was estimated by measuring cellular release of lactate dehydrogenase (LDH). A particle concentration-dependent increase in IL-6 release was observed in both CM mono- and co-cultures (EC(50) approximately 57microg/ml). Furthermore, IL-6 levels detected in both control and particle-exposed co-cultures were synergistically increased compared to mono-cultures (10-19-fold, dependent on the exposure). Experiments with contact and non-contact co-cultures indicate that direct cellular contact is of key importance for the enhanced release of IL-6 in co-cultures. An apparent particle-induced release of IL-1beta was only detected in co-cultures. The release of TNF-alpha was low and did not seem notably influenced by particle exposure. Treatment with an IL-1 receptor antagonist apparently eliminated the particle-induced release of IL-6. In conclusion, ultrafine particles have a pro-inflammatory potential in primary cardiac cells. Furthermore, IL-1 seems critical in triggering particle-induced release of IL-6. These pro-inflammatory responses may be elicited when particles are translocated into the pulmonary circulation upon inhalation or administered intravascularly during medical procedures.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2014
Annike I. Totlandsdal; Johan Øvrevik; Richard E. Cochran; Jan-Inge Herseth; Anette Kocbach Bølling; Marit Låg; Per E. Schwarze; Edel Lilleaas; Jørn A. Holme; Alena Kubátová
Exposure to combustion emissions, including diesel engine exhaust and wood smoke particles (DEPs and WSPs), has been associated with inflammatory responses. To investigate the possible role of polycyclic aromatic hydrocarbons (PAHs) and PAH-derivatives, the DEPs and WSPs methanol extracts were fractionated by solid phase extraction (SPE), and the fractions were analyzed for more than ∼120 compounds. The pro-inflammatory effects of the fractionated extracts were characterized by exposure of bronchial epithelial lung cells (BEAS-2B). Both native DEPs and WSPs caused a concentration-dependent increase in IL-6 and IL-8 release and cytotoxicity. This is consistent with the finding of a rather similar total content of PAHs and PAH-derivatives. Yet, the samples differed in specific components, suggesting that different species contribute to the toxicological response in these two types of particles. The majority of the IL-6 release and cytotoxicity was induced upon exposure to the most polar (methanol) SPE fraction of extracts from both samples. In these fractions hydroxy-PAHs, carboxy-PAHs were observed along with nitro-amino-PAHs in DEP. However, the biological effects induced by the polar fractions could not be attributed only to the occurrence of PAH-derivatives. The present findings indicate a need for further characterization of organic extracts, beyond an extensive analysis of commonly suspected PAH and PAH-derivatives. Supplemental materials are available for this article. Go to the publishers online edition of Journal of Environmental Science and Health, Part A, to view the supplemental file.
Toxicology in Vitro | 2010
Annike I. Totlandsdal; Magne Refsnes; Marit Låg
The aims of the present study were to establish to what extent IL-1, and intracellular pathways involving mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kappaB), play a role in ultrafine particle-induced release of IL-6 by primary rat epithelial lung cells. Ultrafine carbon black (Printex 90) induced a concentration- and time-dependent increase in the release of IL-1alpha, IL-1beta and IL-6. The ultrafine carbon black-induced release of IL-6 was completely eliminated by an IL-1 receptor antagonist (IL-1ra). Cellular release of IL-1alpha, IL-1beta and IL-6 was significantly attenuated by curcumin and by inhibitors of the MAPKs ERK1/2 (PD98069), p38 (SB202190) and JNK (SP600125), whereas pyrrolidine dithiocarbamate (PDTC) attenuated the release of IL-6, but not of IL-1alpha and IL-1beta. The effects of curcumin and PDTC may indicate an involvement of NF-kappaB. Furthermore, ultrafine carbon black induced degradation of IkappaBalpha, used as an indicator of NF-kappaB activation, and induced phosphorylation of ERK1/2, p38 and JNK1/2. This degradation and phosphorylation was attenuated by IL-1ra. The present findings provide more insight into the largely unknown mechanisms involved in ultrafine particle-induced release of cytokines from lung cells. The findings suggest that ultrafine carbon black-induced release of IL-6 strongly depends on IL-1 and that activation of MAPKs and NF-kappaB is involved in this response.
Collaboration
Dive into the Annike I. Totlandsdal's collaboration.
Oslo and Akershus University College of Applied Sciences
View shared research outputs