Annop Wongwathanarat
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Annop Wongwathanarat.
The Astrophysical Journal | 2013
Florian Hanke; Bernhard Müller; Annop Wongwathanarat; Andreas Marek; Hans-Thomas Janka
The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M ☉ progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, ±1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M ☉ progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.
Astronomy and Astrophysics | 2013
Annop Wongwathanarat; H.-Th. Janka; Ewald Müller
We present three-dimensional (3D) simulations of supernova explosions of nonrotating stars, triggered by the delayed neutrinoheating mechanism with a suitable choice of the core-neutrino luminosity. Our results show that asymmetric mass ejection caused by hydrodynamic instabilities can accelerate the neutron star (NS) up to recoil velocities of more than 700 km s 1 by the “gravitational tug-boat mechanism”, which is su cient to explain most observed pulsar space velocities. The associated NS spin periods for our nonrotating progenitors are about 100 ms to 8000 ms without any obvious correlation between spin and kick magnitudes or directions. This suggests that faster spins and a possible spin-kick alignment might require angular momentum in the progenitor core prior to collapse. Our simulations for the first time demonstrate a clear correlation between the size of the NS kick and anisotropic production and distribution of heavy elements created by explosive burning behind the shock. In the case of large pulsar kicks the explosion is significantly stronger opposite to the kick vector. Therefore the bulk of the explosively fused iron-group elements, in particular nickel, is ejected mostly in large clumps against the kick direction. This contrasts with the case of low recoil velocity, where the nickel-rich lumps are more isotropically distributed. Explosively produced intermediate-mass nuclei heavier than 28 Si (like 40 Ca and 44 Ti) also exhibit a significant enhancement in the hemisphere opposite to the direction of fast NS motion, while the distribution of 12 C, 16 O, and 20 Ne is not a ected, and that of 24 Mg only marginally. Mapping the spatial distribution of the heavy elements in supernova remnants with identified pulsar motion may o er an important diagnostic test of the kick mechanism. Di erent from kick scenarios based on anisotropic neutrino emission, our hydrodynamical acceleration model predicts enhanced ejection of iron-group elements and of their nuclear precursors in the direction opposite to the NS recoil.
Astronomy and Astrophysics | 2015
Annop Wongwathanarat; Ewald Müller; H.-Thomas Janka
We present 3D simulations of core-collapse supernovae from blast-wave initiation by the neutrino-driven mechanism to shock breakout from the stellar surface, considering two 15 Msun red supergiants (RSG) and two blue supergiants (BSG) of 15 Msun and 20 Msun. We demonstrate that the metal-rich ejecta in homologous expansion still carry fingerprints of asymmetries at the beginning of the explosion, but the final metal distribution is massively affected by the detailed progenitor structure. The most extended and fastest metal fingers and clumps are correlated with the biggest and fastest-rising plumes of neutrino-heated matter, because these plumes most effectively seed the growth of Rayleigh-Taylor (RT) instabilities at the C+O/He and He/H composition-shell interfaces after the passage of the SN shock. The extent of radial mixing, global asymmetry of the metal-rich ejecta, RT-induced fragmentation of initial plumes to smaller-scale fingers, and maximal Ni and minimal H velocities do not only depend on the initial asphericity and explosion energy (which determine the shock and initial Ni velocities) but also on the density profiles and widths of C+O core and He shell and on the density gradient at the He/H transition, which lead to unsteady shock propagation and the formation of reverse shocks. Both RSG explosions retain a great global metal asymmetry with pronounced clumpiness and substructure, deep penetration of Ni fingers into the H-envelope (with maximum velocities of 4000-5000 km/s for an explosion energy around 1.5 bethe) and efficient inward H-mixing. While the 15 Msun BSG shares these properties (maximum Ni speeds up to ~3500 km/s), the 20 Msun BSG develops a much more roundish geometry without pronounced metal fingers (maximum Ni velocities only ~2200 km/s) because of reverse-shock deceleration and insufficient time for strong RT growth and fragmentation at the He/H interface.
The Astrophysical Journal | 2010
Annop Wongwathanarat; Hans-Thomas Janka; Ewald Müller
Using three-dimensional (3D) simulations of neutrino-powered supernova explosions, we show that the hydrodynamical kick scenario proposed by Scheck et al. on the basis of two-dimensional (2D) models can yield large neutron star (NS) recoil velocities also in 3D. Although the shock stays relatively spherical, standing accretion-shock and convective instabilities lead to a globally asymmetric mass and energy distribution in the post-shock layer. An anisotropic momentum distribution of the ejecta is built up only after the explosion sets in. Total momentum conservation implies the acceleration of the NS on a timescale of 1-3 s, mediated mainly by long-lasting, asymmetric accretion downdrafts and the anisotropic gravitational pull of large inhomogeneities in the ejecta. In a limited set of 15 M ☉ models with an explosion energy of about 1051 erg, this stochastic mechanism is found to produce kicks from <100 km s–1 to 500 km s–1, and kicks 1000 km s–1 seem possible. Strong rotational flows around the accreting NS do not develop in our collapsing, non-rotating progenitors. The NS spins therefore remain low with estimated periods of ~500-1000 ms and no alignment with the kicks.
Astronomy and Astrophysics | 2012
Ewald Müller; H.-Th. Janka; Annop Wongwathanarat
Time-dependent and direction-dependent neutrino and gravitational-wave (GW) signatures are presented for a set of three-dimensional (3D) hydrodynamic models of parametrized, neutrino-driven supernova explosions of non-rotating 15 and 20 M⊙ stars. We employ an approximate treatment of neutrino transport based on a gray spectral description and a ray-by-ray treatment of multi-dimensional effects. Due to the excision of the high-density core of the prot o-neutron star and the use of an axis-free (Yin-Yang or ”‘baseball”’) overset grid, the models can be followed from the post-bounce accretion phase through the onset of the explosion into more than one second of the early cooling evolution of the PNS without imposing any symmetry restrictions and covering a full sphere. GW and neutrino emission exhibit the generic time-dependent features already known from 2D (axi-symmetric) models. Violent non-radial hydrodynamic mass motions in the accretion layer and their interaction with the outer layers of the proto-neutron star t ogether with anisotropic neutrino emission give rise to a GW signal with an amplitude of∼ 5− 20 cm in the frequency range of 100‐500 Hz. The GW emission from mass motions usually reaches a maximum before the explosion sets in. After the onset of the explosion the GW signal exhibits a low-frequency modulation, in some cases describing a quasi-monotonic growth, associated with the non-spherical expansion of the explosion shock wave and the large-scale anisotropy of the escaping neutrino flow. Variations of the mas s-quadrupole moment due to convective activity inside the nascent neutron star contribute a high-frequency component to the GW signal during the post-explosion phase. The GW signals exhibit strong variability between the two polarizations, different explosion simulations and different observer directions, and besides common basic features do not possess any template character. The neutrino emission properties (fluxes and e ffective spectral temperatures) show fluctuations over the ne utron star surface on spatial and temporal scales that reflect the di fferent types of non-spherical mass motions in the supernova core, i.e., post-shock overturn flows and proto-neutron star convection. However, because very prominent, quasi-periodic sloshing motions of the shock due to the standing accretion-shock instability are absent and the emission from different surface areas facing an observer adds up incoherently, the modulation amplitudes of the measurable neutrino luminosities and mean energies are significantly smaller than predicted by 2D simulations.
Astronomy and Astrophysics | 2010
Annop Wongwathanarat; Nicolay J. Hammer; Ewald Müller
Aims. Three dimensional explicit hydrodynamic codes based on spherical polar coordinates using a single spherical polar grid suffer from a severe restriction of the time step size due to the convergence of grid lines near the poles of the coordinate system. More importantly, numerical artifacts are encountered at the symmetry axis of the grid where boundary conditions have to be imposed that flaw the flow near the axis. The first problem can be eased and the second one avoided by applying an overlapping grid technique. Methods. A type of overlapping grid in spherical coordinates is adopted. This so called “Yin-Yang” grid is a two-patch overset grid proposed by Kageyama and Sato for geophysical simulations. Its two grid patches contain only the low-latitude regions of the usual spherical polar grid and are combined together in a simple manner. This property of the Yin-Yang grid greatly simplifies its implementation into a 3D code already employing spherical polar coordinates. It further allows for a much larger time step in 3D simulations using high angular resolution (<1 ◦ ) than that required in 3D simulations using a regular spherical grid with the same angular resolution. Results. The Yin-Yang grid is successfully implemented into a 3D version of the explicit Eulerian grid-based code PROMETHEUS including self-gravity. The modified code successfully passed several standard hydrodynamic tests producing results which are in very good agreement with analytic solutions. Moreover, the solutions obtained with the Yin-Yang grid exhibit no peculiar behaviour at the boundary between the two grid patches. The code has also been successfully used to model astrophysically relevant situations, namely equilibrium polytropes, a Taylor-Sedov explosion, and Rayleigh-Taylor instabilities. According to our results, the usage of the Yin-Yang grid greatly enhances the suitability and efficiency of 3D explicit Eulerian codes based on spherical polar coordinates for astrophysical flows.
Astronomy and Astrophysics | 2015
V. P. Utrobin; Annop Wongwathanarat; H.-Th. Janka; Ewald Müller
The well-studied type IIP SN 1987A, produced by the explosion of a blue supergiant (BSG) star, is a touchstone for massive-star evolution, simulations of neutrino-driven explosions, and modeling of light curves and spectra. In the framework of the neutrino-driven mechanism, we study the dependence of explosion properties on the structure of four different BSGs and compare the corresponding light curves with observations of SN 1987A. We perform 3D simulations with the PROMETHEUS code until about one day and map the results to the 1D code CRAB for the light curve calculations. All of our 3D models with explosion energies compatible with SN 1987A produce 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail. One of the progenitors yields maximum velocities of ~3000 km/s for the bulk of ejected 56Ni, consistent with observations. In all of our models inward mixing of hydrogen during the 3D evolution leads to minimum H-velocities below 100 km/s, in good agreement with spectral observations. The considered BSG models, 3D explosion simulations, and light-curve calculations can thus explain basic observational features of SN 1987A. However, all progenitors have too large pre-SN radii to reproduce the narrow initial luminosity peak, and the structure of their outer layers is not suitable to match the observed light curve during the first 30-40 days. Only one stellar model has a structure of the He core and the He/H composition interface that enables sufficient outward mixing of 56Ni and inward mixing of hydrogen to produce a good match of the dome-like shape of the observed light-curve maximum. But this model falls short of the He-core mass of 6 Msun inferred from the absolute luminosity of the pre-SN star. The lack of an adequate pre-SN model for SN 1987A is a pressing challenge for the theory of massive-star evolution. (Abridged)
Physical Review D | 2012
Tina Lund; Annop Wongwathanarat; Hans-Thomas Janka; Ewald Müller; Georg G. Raffelt
Here, we study supernova neutrino flux variations in the IceCube detector, using 3D models based on a simplified neutrino transport scheme. The hemispherically integrated neutrino emission shows significantly smaller variations compared with our previous study of 2D models, largely because of the reduced activity of the standing accretion shock instability in this set of 3D models which we interpret as a pessimistic extreme. For the studied cases, intrinsic flux variations up to about 100 Hz frequencies could still be detected in a supernova closer than about 2 kpc.
The Astrophysical Journal | 2017
V. P. Utrobin; Annop Wongwathanarat; H.-Th. Janka; Ewald Müller
Type II-plateau supernovae (SNe IIP) are the most numerous subclass of core-collapse SNe originating from massive stars. In the framework of the neutrino-driven explosion mechanism, we study the SN outburst properties for a red supergiant progenitor model and compare the corresponding light curves with observations of the ordinary Type IIP SN 1999em. Three-dimensional (3D) simulations of (parametrically triggered) neutrino-driven explosions are performed with the (explicit, finite-volume, Eulerian, multifluid hydrodynamics) code PROMETHEUS, using a presupernova model of a 15 Msun star as initial data. At approaching homologous expansion, the hydrodynamical and composition variables of the 3D models are mapped to a spherically symmetric configuration, and the simulations are continued with the (implicit, Lagrangian radiation-hydrodynamics) code CRAB to follow the blast-wave evolution during the SN outburst. Our 3D neutrino-driven explosion model with an explosion energy of about 0.5x10^51 erg produces Ni-56 in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail of SN 1999em. The considered presupernova model, 3D explosion simulations, and light-curve calculations can explain the basic observational features of SN 1999em, except for those connected to the presupernova structure of the outer stellar layers. Our 3D simulations show that the distribution of Ni-rich matter in velocity space is asymmetric with a strong dipole component that is consistent with the observations of SN 1999em. The monotonic luminosity decline from the plateau to the radioactive tail in ordinary SNe IIP is a manifestation of the intense turbulent mixing at the He/H composition interface.
The Astrophysical Journal | 2018
Dennis Alp; Josefin Larsson; Claes Fransson; Michael Gabler; Annop Wongwathanarat; Hans-Thomas Janka
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical ...