Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anouk Wezel is active.

Publication


Featured researches published by Anouk Wezel.


Cardiovascular Research | 2013

Complement factor C5a as mast cell activator mediates vascular remodelling in vein graft disease

Margreet R. de Vries; Anouk Wezel; Abbey Schepers; Peter J. van Santbrink; Trent M. Woodruff; Hans W.M. Niessen; Jaap F. Hamming; Johan Kuiper; Ilze Bot; Paul H.A. Quax

AIMS Failure of vein graft conduits due to vein graft thickening, accelerated atherosclerosis, and subsequent plaque rupture is applicable to 50% of all vein grafts within 10 years. New potential therapeutic targets to treat vein graft disease may be found in components of the innate immune system, such as mast cells and complement factors, which are known to be involved in atherosclerosis and plaque destabilization. Interestingly, mast cells can be activated by complement factor C5a and, therefore, a direct role for C5a-mediated mast cell activation in vein graft disease is anticipated. We hypothesize that C5a-mediated mast cell activation is involved in the development and destabilization of vein graft lesions. METHODS AND RESULTS Mast cells accumulated in time in murine vein graft lesions, and C5a and C5a-receptor (CD88) expression was up-regulated during vein graft disease in apolipoprotein E-deficient mice. Mast cell activation with dinitrophenyl resulted in a profound increase in vein graft thickening and in the number of plaque disruptions. C5a application enhanced vein graft lesion formation, while treatment with a C5a-receptor antagonist resulted in decreased vein graft disease. C5a most likely exerts its function via mast cell activation since the mast cell inhibitor cromolyn totally blocked C5a-enhanced vein graft disease. CONCLUSION These data provide evidence that complement factor C5a-induced mast cell activation is highly involved in vein graft disease, which identifies new targets to prevent vein graft disease.


Atherosclerosis | 2014

Vascular neuropeptide Y contributes to atherosclerotic plaque progression and perivascular mast cell activation.

H. Maxime Lagraauw; Marijke M Westra; Martine Bot; Anouk Wezel; Peter J. van Santbrink; Gerard Pasterkamp; Erik A.L. Biessen; Johan Kuiper; Ilze Bot

AIM Neuropeptide Y is an abundantly expressed neurotransmitter capable of modulating both immune and metabolic responses related to the development of atherosclerosis. NPY receptors are expressed by a number of vascular wall cell types, among which mast cells. However, the direct effects of NPY on atherosclerotic plaque development and progression remain to be investigated. In this study we thus aimed to determine whether NPY is expressed in atherosclerotic plaques and to establish its role in atherosclerotic plaque development. METHODS AND RESULTS NPY expression was seen to be increased up to 2-fold in unstable human endarterectomy plaques, as compared to stable plaques, and to be significantly upregulated during lesion progression in apoE(-/-) mice. In apoE(-/-) mice focal overexpression of NPY in the carotid artery significantly increased atherosclerotic plaque size compared to controls, while plaque composition was unaffected. Interestingly, perivascular mast cell activation was significantly higher in the NPY-overexpressing mice, suggesting that NPY may impact plaque progression in part via mast cell activation. Furthermore, in vitro NPY-induced murine mast cell activation resulted in the release of pro-atherogenic mediators including IL-6 and tryptase. CONCLUSIONS Our data show that NPY expression is increased during atherogenesis and in particular in unstable plaques. Furthermore, perivascular overexpression of NPY promoted plaque development and perivascular mast cell activation, suggestive of a role for NPY-induced mast cell activation in lesion progression.


PLOS ONE | 2014

TLR4 Accessory Molecule RP105 (CD180) Regulates Monocyte-Driven Arteriogenesis in a Murine Hind Limb Ischemia Model

A.J.N.M. Bastiaansen; Jacco C. Karper; Anouk Wezel; Hetty C. de Boer; Sabine M.J. Welten; Rob C. M. de Jong; Erna Peters; Margreet R. de Vries; Annemarie M. van Oeveren-Rietdijk; Anton Jan van Zonneveld; Jaap F. Hamming; A. Yaël Nossent; Paul H.A. Quax

Aims We investigated the role of the TLR4-accessory molecule RP105 (CD180) in post-ischemic neovascularization, i.e. arteriogenesis and angiogenesis. TLR4-mediated activation of pro-inflammatory Ly6Chi monocytes is crucial for effective neovascularization. Immunohistochemical analyses revealed that RP105+ monocytes are present in the perivascular space of remodeling collateral arterioles. As RP105 inhibits TLR4 signaling, we hypothesized that RP105 deficiency would lead to an unrestrained TLR4-mediated inflammatory response and hence to enhanced blood flow recovery after ischemia. Methods and Results RP105−/− and wild type (WT) mice were subjected to hind limb ischemia and blood flow recovery was followed by Laser Doppler Perfusion Imaging. Surprisingly, we found that blood flow recovery was severely impaired in RP105−/− mice. Immunohistochemistry showed that arteriogenesis was reduced in these mice compared to the WT. However, both in vivo and ex vivo analyses showed that circulatory pro-arteriogenic Ly6Chi monocytes were more readily activated in RP105−/− mice. FACS analyses showed that Ly6Chi monocytes became activated and migrated to the affected muscle tissues in WT mice following induction of hind limb ischemia. Although Ly6Chi monocytes were readily activated in RP105−/− mice, migration into the ischemic tissues was hampered and instead, Ly6Chi monocytes accumulated in their storage compartments, bone marrow and spleen, in RP105−/− mice. Conclusions RP105 deficiency results in an unrestrained inflammatory response and monocyte over-activation, most likely due to the lack of TLR4 regulation. Inappropriate, premature systemic activation of pro-inflammatory Ly6Chi monocytes results in reduced infiltration of Ly6Chi monocytes in ischemic tissues and in impaired blood flow recovery.


Journal of Cellular and Molecular Medicine | 2014

Complement factor C5a induces atherosclerotic plaque disruptions

Anouk Wezel; Margreet R. de Vries; H. Maxime Lagraauw; Amanda C. Foks; Johan Kuiper; Paul H.A. Quax; Ilze Bot

Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE−/− mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications.


Arthritis Research & Therapy | 2016

Mast cell depletion in the preclinical phase of collagen-induced arthritis reduces clinical outcome by lowering the inflammatory cytokine profile.

Daniël van der Velden; H. Maxime Lagraauw; Anouk Wezel; Pierre Launay; Johan Kuiper; Tom W J Huizinga; René E. M. Toes; Ilze Bot; Jeroen N. Stoop

BackgroundRheumatoid arthritis (RA) is a multifactorial autoimmune disease, which is characterized by inflammation of synovial joints leading to the destruction of cartilage and bone. Infiltrating mast cells can be found within the inflamed synovial tissue, however their role in disease pathogenesis is unclear. Therefore we have studied the role of mast cells during different phases of experimental arthritis.MethodsWe induced collagen-induced arthritis (CIA), the most frequently used animal model of arthritis, in an inducible mast cell knock-out mouse and determined the effect of mast cell depletion on the development and severity of arthritis.ResultsDepletion of mast cells in established arthritis did not affect clinical outcome. However, depletion of mast cells during the preclinical phase resulted in a significant reduction in arthritis. This reduction coincided with a decrease in circulating CD4+ T cells and inflammatory monocytes but not in the collagen-specific antibody levels. Mast cell depletion resulted in reduced levels of IL-6 and IL-17 in serum. Furthermore, stimulation of splenocytes from mast cell-depleted mice with collagen type II resulted in reduced levels of IL-17 and enhanced production of IL-10.ConclusionsHere we show that mast cells contribute to the preclinical phase of CIA. Depletion of mast cells before disease onset resulted in an altered collagen-specific T cell and cytokine response. These data may suggest that mast cells play a role in the regulation of the adaptive immune response during the development of arthritis.


Scientific Reports | 2016

Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response

Anouk Wezel; Margreet R. de Vries; Johanna M. Maassen; Peter Kip; Erna Peters; Jacco C. Karper; Johan Kuiper; Ilze Bot; Paul H.A. Quax

Venous grafts are often used to bypass occlusive atherosclerotic lesions; however, poor patency leads to vein graft disease. Deficiency of TLR4, an inflammatory regulator, reduces vein graft disease. Here, we investigate the effects of the accessory molecule and TLR4 analogue RadioProtective 105 (RP105) on vein graft disease. RP105 deficiency resulted in a 90% increase in vein graft lesion area compared to controls. In a hypercholesterolemic setting (LDLr−/−/RP105−/− versus LDLr−/− mice), which is of importance as vein graft disease is usually characterized by excessive atherosclerosis, total lesion area was not affected. However we did observe an increased number of unstable lesions and intraplaque hemorrhage upon RP105 deficiency. In both setups, lesional macrophage content, and lesional CCL2 was increased. In vitro, RP105−/− smooth muscle cells and mast cells secreted higher levels of CCL2. In conclusion, aggravated vein graft disease caused by RP105 deficiency results from an increased local inflammatory response.


Atherosclerosis | 2015

Mast cells mediate neutrophil recruitment during atherosclerotic plaque progression

Anouk Wezel; H. Maxime Lagraauw; Daniël van der Velden; Saskia C.A. de Jager; Paul H.A. Quax; Johan Kuiper; Ilze Bot

AIMS Activated mast cells have been identified in the intima and perivascular tissue of human atherosclerotic plaques. As mast cells have been described to release a number of chemokines that mediate leukocyte fluxes, we propose that activated mast cells may play a pivotal role in leukocyte recruitment during atherosclerotic plaque progression. METHODS AND RESULTS Systemic IgE-mediated mast cell activation in apoE(-/-)μMT mice resulted in an increase in atherosclerotic lesion size as compared to control mice, and interestingly, the number of neutrophils was highly increased in these lesions. In addition, peritoneal mast cell activation led to a massive neutrophil influx into the peritoneal cavity in C57Bl6 mice, whereas neutrophil numbers in mast cell deficient Kit(W(-sh)/W(-sh)) mice were not affected. Within the newly recruited neutrophil population, increased levels of CXCR2(+) and CXCR4(+) neutrophils were observed after mast cell activation. Indeed, mast cells were seen to contain and release CXCL1 and CXCL12, the ligands for CXCR2 and CXCR4. Intriguingly, peritoneal mast cell activation in combination with anti-CXCR2 receptor antagonist resulted in decreased neutrophil recruitment, thus establishing a prominent role for the CXCL1/CXCR2 axis in mast cell-mediated neutrophil recruitment. CONCLUSIONS Our data suggest that chemokines, and in particular CXCL1, released from activated mast cells induce neutrophil recruitment to the site of inflammation, thereby aggravating the ongoing inflammatory response and thus affecting plaque progression and destabilization.


Hamostaseologie | 2014

The role of mast cells in atherosclerosis

Anouk Wezel; Paul H.A. Quax; Johan Kuiper; Ilze Bot

Rupture of an atherosclerotic plaque is the major underlying cause of adverse cardiovascular events such as myocardial infarction or stroke. Therapeutic interventions should therefore be directed towards inhibiting growth of atherosclerotic lesions as well as towards prevention of lesion destabilization. Interestingly, the presence of mast cells has been demonstrated in both murine and human plaques, and multiple interventional murine studies have pointed out a direct role for mast cells in early and late stages of atherosclerosis. Moreover, it has recently been described that activated lesional mast cells correlate with major cardiovascular events in patients suffering from cardiovascular disease. This review focuses on the effect of different mast cell derived mediators in atherogenesis and in late stage plaque destabilization. Also, possible ligands for mast cell activation in the context of atherosclerosis are discussed. Finally, we will elaborate on the predictive value of mast cells, together with therapeutic implications, in cardiovascular disease.


Cardiovascular Research | 2018

CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses

Janine van Duijn; Eva Kritikou; Naomi Benne; Thomas van der Heijden; Gijs H.M. van Puijvelde; Mara J. Kröner; Frank Schaftenaar; Amanda C. Foks; Anouk Wezel; Harm Smeets; Hideo Yagita; Ilze Bot; Wim Jiskoot; Johan Kuiper; Bram Slütter

AIMS T lymphocytes play an important role in atherosclerosis development, but the role of the CD8+ T-cell remains debated, especially in the clinically relevant advanced stages of atherosclerosis development. Here, we set out to determine the role of CD8+ T-cells in advanced atherosclerosis. METHODS AND RESULTS Human endarterectomy samples analysed by flow cytometry showed a negative correlation between the percentage of CD8+ T-cells and macrophages, suggesting a possible protective role for these cells in lesion development. To further test this hypothesis, LDLr-/- mice were fed a western-type diet (WTD) for 10 weeks to induce atherosclerosis, after which they received CD8α-depleting or isotype control antibody for 6 weeks. Depletion of CD8+ T-cells in advanced atherosclerosis resulted in less stable lesions, with significantly reduced collagen content in the trivalve area, increased macrophage content and increased necrotic core area compared with controls. Mechanistically, we observed that CD8 depletion specifically increased the fraction of Th1 CD4+ T-cells in the lesions. Treatment of WTD-fed LDLr-/- mice with a FasL-neutralizing antibody resulted in similar changes in macrophages and CD4+ T-cell skewing as CD8+ T-cell depletion. CONCLUSION These findings demonstrate for the first time a local, protective role for CD8+ T-cells in advanced atherosclerosis, through limiting accumulation of Th1 cells and macrophages, identifying a novel regulatory mechanism for these cells in atherosclerosis.


Annals of Surgery | 2015

Inhibition of MicroRNA-494 Reduces Carotid Artery Atherosclerotic Lesion Development and Increases Plaque Stability.

Anouk Wezel; Sabine M.J. Welten; Razawy W; H.M. Lagraauw; de Vries Mr; Eac Goossens; Martin C. Boonstra; Jaap F. Hamming; Ekambar R. Kandimalla; Johan Kuiper; Paul H.A. Quax; A.Y. Nossent; Ilze Bot

Collaboration


Dive into the Anouk Wezel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul H.A. Quax

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margreet R. de Vries

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine M.J. Welten

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

A. Yaël Nossent

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erna Peters

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jaap F. Hamming

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge