Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anqi X. Qin is active.

Publication


Featured researches published by Anqi X. Qin.


Journal of Biological Chemistry | 2003

Role of Antisense RNA in Coordinating Cardiac Myosin Heavy Chain Gene Switching

Fadia Haddad; Paul W. Bodell; Anqi X. Qin; Julia M. Giger; Kenneth M. Baldwin

A novel mechanism of regulation of cardiac α and β myosin heavy chain gene by naturally occurring antisense transcription was elucidated via pre-mRNA analysis. Herein, we report the expression of an antisense β myosin heavy chain RNA in the normal rodent myocardium. The pattern of expression of the antisense βMHC RNA (β RNA) under altered thyroid state and in diabetes directly correlates with that of the α pre-mRNA/mRNA, whereas it negatively correlates with the β mRNA expression. Rapid amplification of the 5′ end shows that this antisense transcript originates 2 kb downstream of the β gene, and it is transcribed across the entire β gene from the opposite strand. Our results demonstrate that the β-α myosin heavy chain intergenic DNA possesses a bidirectional transcriptional activity, one direction transcribing the α gene, and the opposite direction transcribing the antisense β RNA. This process turns on the α expression, and it simultaneously turns off that of the β and thus coordinates α and β expression in an opposite fashion. Comparative analyses of the intergenic DNA sequence across five mammalian species revealed a conserved region that is proposed to be a common regulatory region for the α and antisense β promoter. This finding unravels the mechanism of cardiac α-β gene switching and implicates the role of cardiac myosin gene organization with their function.


BMC Biotechnology | 2007

Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR

Fadia Haddad; Anqi X. Qin; Julie M Giger; Hongyan Guo; Kenneth M. Baldwin

BackgroundThe ability to accurately measure patterns of gene expression is essential in studying gene function. The reverse transcription polymerase chain reaction (RT-PCR) has become the method of choice for the detection and measurement of RNA expression patterns in both cells and small quantities of tissue. Our previous results show that there is a significant production of primer-independent cDNA synthesis using a popular RNase H- RT enzyme. A PCR product was amplified from RT reactions that were carried out without addition of RT-primer. This finding jeopardizes the accuracy of RT-PCR when analyzing RNA that is expressed in both orientations. Current literature findings suggest that naturally occurring antisense expression is widespread in the mammalian transcriptome and consists of both coding and non-coding regulatory RNA. The primary purpose of this present study was to investigate the occurrence of primer-independent cDNA synthesis and how it may influence the accuracy of detection of sense-antisense RNA pairs.ResultsOur findings on cellular RNA and in vitro synthesized RNA suggest that these products are likely the results of RNA self-priming to generate random cDNA products, which contributes to the loss of strand specificity. The use of RNase H+ RT enzyme and carrying the RT reaction at high temperature (50°C) greatly improved the strand specificity of the RT-PCR detection.ConclusionWhile RT PCR is a basic method used for the detection and quantification of RNA expression in cells, primer-independent cDNA synthesis can interfere with RT specificity, and may lead to misinterpretation of the results, especially when both sense and antisense RNA are expressed. For accurate interpretation of the results, it is essential to carry out the appropriate negative controls.


American Journal of Physiology-cell Physiology | 1999

In vivo regulation of β-MHC gene in rodent heart : role of T3 and evidence for an upstream enhancer

Carola Wright; Fadia Haddad; Anqi X. Qin; Paul W. Bodell; Kenneth M. Baldwin

Cardiac β-myosin heavy chain (β-MHC) gene expression is mainly regulated through transcriptional processes. Although these results are based primarily on in vitro cell culture models, relatively little information is available concerning the interaction of key regulatory factors thought to modulate MHC expression in the intact rodent heart. Using a direct gene transfer approach, we studied the in vivo transcriptional activity of different-length β-MHC promoter fragments in normal control and in altered thyroid states. The test β-MHC promoter was fused to a firefly luciferase reporter gene, whereas the control α-MHC promoter was fused to the Renilla luciferase reporter gene and was used to account for variations in transfection efficiency. Absolute reporter gene activities showed that β- and α-MHC genes were individually and reciprocally regulated by thyroid hormone. The β-to-α ratios of reporter gene expression demonstrated an almost threefold larger β-MHC gene expression in the longest than in the shorter promoter fragments in normal control animals, implying the existence of an upstream enhancer. A mutation in the putative thyroid response element of the -408-bp β-MHC promoter construct caused transcriptional activity to drop to null. When studied in the -3,500-bp β-MHC promoter, construct activity was reduced (∼100-fold) while thyroid hormone responsiveness was retained. These findings suggest that, even though the bulk of the thyroid hormone responsiveness of the gene is contained within the first 215 bp of the β-MHC promoter sequence, the exact mechanism of triiodothyronine (T3) action remains to be elucidated.


Journal of Biological Chemistry | 2006

Dynamics of Myosin Heavy Chain Gene Regulation in Slow Skeletal Muscle ROLE OF NATURAL ANTISENSE RNA

Clay E. Pandorf; Fadia Haddad; Roland R. Roy; Anqi X. Qin; V. Reggie Edgerton; Kenneth M. Baldwin

The evolutionarily conserved order of the skeletal muscle myosin heavy chain (MHC) genes and their close tandem proximity on the same chromosome are intriguing and may be important for their coordinated regulation. We investigated type II MHC gene regulation in slow-type muscle fibers undergoing a slow to fast MHC transformation in response to inactivity, 7 days after spinal cord isolation (SI) in rats. We examined the transcriptional products of both the sense and antisense strands across the IIa-IIx-IIb MHC gene locus. A strand-specific reverse transcription (RT)-PCR approach was utilized to study the expression of the mRNA, the primary transcript (pre-mRNA), the antisense RNA overlapping the MHC genes, and both the intergenic sense and antisense RNAs. Results showed that the mRNA and pre-mRNA of each MHC had a similar response to SI, suggesting regulation of these genes at the transcriptional level. In addition, we detected previously unknown antisense strand transcription that produced natural antisense transcripts (NATs). RT-PCR mapping of the RNA products revealed that the antisense activity resulted in the formation of three major products: aII, xII, and bII NATs (antisense products of the IIa, IIx, and IIb genes, respectively). The aII NAT begins in the IIa-IIx intergenic region in close proximity to the IIx promoter, extends across the 27-kb IIa MHC gene, and continues to the IIa MHC gene promoter. The expression of the aII NAT was significantly up-regulated in muscles after SI, was negatively correlated with IIa MHC gene expression, and was positively correlated with IIx MHC gene expression. The exact role of the aII NAT is not clear; however, it is consistent with the inhibition of IIa MHC gene transcription. In conclusion, NATs may mediate cross-talk between adjacent genes, which may be essential to the coordinated regulation of the skeletal muscle MHC genes during dynamic phenotype shifts.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Intergenic Bidirectional Promoter and Cooperative Regulation of the IIx and IIb MHC Genes in Fast Skeletal Muscle

Chiara Rinaldi; Fadia Haddad; Paul W. Bodell; Anqi X. Qin; Weihua Jiang; Kenneth M. Baldwin

This study investigated the dynamic regulation of IIx-IIb MHC genes in the fast white medial gastrocnemius (WMG) muscle in response to intermittent resistance exercise training (RE), a model associated with a rapid shift from IIb to IIx expression (11). We investigated the effect of 4 days of RE on the transcriptional activity across the skeletal MHC gene locus in the WMG in female Sprague-Dawley rats. Our results show that RE resulted in significant shifts from IIb to IIx observed at both the pre-mRNA and mRNA levels. An antisense RNA (xII NAT) was detected in the intergenic (IG) region between IIx and IIb, extending across the entire IIx gene and into its promoter. The expression of the xII NAT was positively correlated with IIb pre-mRNA (R = +0.8), and negatively correlated with IIx pre-mRNA (R = -0.8). Transcription mapping of the IIx-IIb IG region revealed the generation of sense IIb and xII NATs from a single promoter region. This bidirectional promoter is highly conserved among species and contains several regulatory elements that may be implicated in its regulation. These results suggest that the IIx and the IIb genes are physically and functionally linked via the bidirectional promoter. In order for the IIx MHC gene to be regulated, a feedback mechanism from the IG xII NAT is needed. In conclusion, the IG bidirectional promoter generating antisense RNA appears to be essential for the coordinated regulation of the skeletal muscle MHC genes during dynamic phenotype shifts.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Calcineurin plays a modulatory role in loading-induced regulation of type I myosin heavy chain gene expression in slow skeletal muscle.

Clay E. Pandorf; Weihua H. Jiang; Anqi X. Qin; Paul W. Bodell; Kenneth M. Baldwin; Fadia Haddad

The role of calcineurin (Cn) in skeletal muscle fiber-type expression has been a subject of great interest because of reports indicating that it controls the slow muscle phenotype. To delineate the role of Cn in phenotype remodeling, particularly its role in driving expression of the type I myosin heavy chain (MHC) gene, we used a novel strategy whereby a profound transition from fast to slow fiber type is induced and examined in the absence and presence of cyclosporin A (CsA), a Cn inhibitor. To induce the fast-to-slow transition, we first subjected rats to 7 days of hindlimb suspension (HS) + thyroid hormone [triiodothyronine (T(3))] to suppress nearly all expression of type I MHC mRNA in the soleus muscle. HS + T(3) was then withdrawn, and rats resumed normal ambulation and thyroid state, during which vehicle or CsA (30 mg x kg(-1) x day(-1)) was administered for 7 or 14 days. The findings demonstrate that, despite significant inhibition of Cn, pre-mRNA, mRNA, and protein abundance of type I MHC increased markedly during reloading relative to HS + T(3) (P < 0.05). Type I MHC expression was, however, attenuated by CsA compared with vehicle treatment. In addition, type IIa and IIx MHC pre-mRNA, mRNA, and relative protein levels were increased in Cn-treated compared with vehicle-treated rats. These findings indicate that Cn has a modulatory role in MHC transcription, rather than a role as a primary regulator of slow MHC gene expression.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle

Clay E. Pandorf; Weihua Jiang; Anqi X. Qin; Paul W. Bodell; Kenneth M. Baldwin; Fadia Haddad

Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.


Journal of Applied Physiology | 1997

Analysis of myosin heavy chain mRNA expression by RT-PCR

Carola Wright; Fadia Haddad; Anqi X. Qin; Kenneth M. Baldwin


Journal of Applied Physiology | 1998

Interaction of hyperthyroidism and hindlimb suspension on skeletal myosin heavy chain expression

Fadia Haddad; Anqi X. Qin; Ming Zeng; S. A. McCue; Kenneth M. Baldwin


Journal of Applied Physiology | 2000

Effects of spaceflight and thyroid deficiency on rat hindlimb development. II. Expression of MHC isoforms

G. R. Adams; Fadia Haddad; S. A. McCue; Paul W. Bodell; Ming Zeng; L. Qin; Anqi X. Qin; Kenneth M. Baldwin

Collaboration


Dive into the Anqi X. Qin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fadia Haddad

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul W. Bodell

University of California

View shared research outputs
Top Co-Authors

Avatar

Julia M. Giger

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. A. McCue

University of California

View shared research outputs
Top Co-Authors

Avatar

Ming Zeng

University of California

View shared research outputs
Top Co-Authors

Avatar

Carola Wright

University of California

View shared research outputs
Top Co-Authors

Avatar

Roland R. Roy

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge