Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anshul Kundaje is active.

Publication


Featured researches published by Anshul Kundaje.


Nature | 2012

Architecture of the human regulatory network derived from ENCODE data

Mark Gerstein; Anshul Kundaje; Manoj Hariharan; Stephen G. Landt; Koon Kiu Yan; Chao Cheng; Xinmeng Jasmine Mu; Ekta Khurana; Joel Rozowsky; Roger P. Alexander; Renqiang Min; Pedro Alves; Alexej Abyzov; Nick Addleman; Nitin Bhardwaj; Alan P. Boyle; Philip Cayting; Alexandra Charos; David Chen; Yong Cheng; Declan Clarke; Catharine L. Eastman; Ghia Euskirchen; Seth Frietze; Yao Fu; Jason Gertz; Fabian Grubert; Arif Harmanci; Preti Jain; Maya Kasowski

Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.


Genome Research | 2012

ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia

Stephen G. Landt; Georgi K. Marinov; Anshul Kundaje; Pouya Kheradpour; Florencia Pauli; Serafim Batzoglou; Bradley E. Bernstein; Peter J. Bickel; James B. Brown; Philip Cayting; Yiwen Chen; Gilberto DeSalvo; Charles B. Epstein; Katherine I. Fisher-Aylor; Ghia Euskirchen; Mark Gerstein; Jason Gertz; Alexander J. Hartemink; Michael M. Hoffman; Vishwanath R. Iyer; Youngsook L. Jung; Subhradip Karmakar; Manolis Kellis; Peter V. Kharchenko; Qunhua Li; Tao Liu; X. Shirley Liu; Lijia Ma; Aleksandar Milosavljevic; Richard M. Myers

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.


Genome Research | 2012

Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors

Jie Wang; Jiali Zhuang; Sowmya Iyer; XinYing Lin; Troy W. Whitfield; Melissa C. Greven; Brian G. Pierce; Xianjun Dong; Anshul Kundaje; Yong Cheng; Oliver J. Rando; Ewan Birney; Richard M. Myers; William Stafford Noble; Michael Snyder; Zhiping Weng

Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant technique for mapping transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are highly conserved evolutionarily and show distinct footprints upon DNase I digestion. We frequently detected secondary motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line-specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for regulating TF binding because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update this repository as more ENCODE data are generated.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Defining functional DNA elements in the human genome

Manolis Kellis; Barbara J. Wold; Michael Snyder; Bradley E. Bernstein; Anshul Kundaje; Georgi K. Marinov; Lucas D. Ward; Ewan Birney; Gregory E. Crawford; Job Dekker; Ian Dunham; Laura Elnitski; Peggy J. Farnham; Elise A. Feingold; Mark Gerstein; Morgan C. Giddings; David M. Gilbert; Thomas R. Gingeras; Eric D. Green; Roderic Guigó; Tim Hubbard; Jim Kent; Jason D. Lieb; Richard M. Myers; Michael J. Pazin; Bing Ren; John A. Stamatoyannopoulos; Zhiping Weng; Kevin P. White; Ross C. Hardison

With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.


Nucleic Acids Research | 2013

Integrative annotation of chromatin elements from ENCODE data

Michael M. Hoffman; Jason Ernst; Steven P. Wilder; Anshul Kundaje; Robert S. Harris; Max Libbrecht; Belinda Giardine; Paul M. Ellenbogen; Jeff A. Bilmes; Ewan Birney; Ross C. Hardison; Ian Dunham; Manolis Kellis; William Stafford Noble

The ENCODE Project has generated a wealth of experimental information mapping diverse chromatin properties in several human cell lines. Although each such data track is independently informative toward the annotation of regulatory elements, their interrelations contain much richer information for the systematic annotation of regulatory elements. To uncover these interrelations and to generate an interpretable summary of the massive datasets of the ENCODE Project, we apply unsupervised learning methodologies, converting dozens of chromatin datasets into discrete annotation maps of regulatory regions and other chromatin elements across the human genome. These methods rediscover and summarize diverse aspects of chromatin architecture, elucidate the interplay between chromatin activity and RNA transcription, and reveal that a large proportion of the genome lies in a quiescent state, even across multiple cell types. The resulting annotation of non-coding regulatory elements correlate strongly with mammalian evolutionary constraint, and provide an unbiased approach for evaluating metrics of evolutionary constraint in human. Lastly, we use the regulatory annotations to revisit previously uncharacterized disease-associated loci, resulting in focused, testable hypotheses through the lens of the chromatin landscape.


Genome Research | 2012

Long noncoding RNAs are rarely translated in two human cell lines

Balázs Bánfai; Hui Jia; Jainab Khatun; Emily J. Wood; Brian Risk; William E. Gundling; Anshul Kundaje; Harsha P. Gunawardena; Yanbao Yu; Ling Xie; Krzysztof Krajewski; Xian Chen; Peter J. Bickel; Morgan C. Giddings; James B. Brown; Leonard Lipovich

Data from the Encyclopedia of DNA Elements (ENCODE) project show over 9640 human genome loci classified as long noncoding RNAs (lncRNAs), yet only ~100 have been deeply characterized to determine their role in the cell. To measure the protein-coding output from these RNAs, we jointly analyzed two recent data sets produced in the ENCODE project: tandem mass spectrometry (MS/MS) data mapping expressed peptides to their encoding genomic loci, and RNA-seq data generated by ENCODE in long polyA+ and polyA- fractions in the cell lines K562 and GM12878. We used the machine-learning algorithm RuleFit3 to regress the peptide data against RNA expression data. The most important covariate for predicting translation was, surprisingly, the Cytosol polyA- fraction in both cell lines. LncRNAs are ~13-fold less likely to produce detectable peptides than similar mRNAs, indicating that ~92% of GENCODE v7 lncRNAs are not translated in these two ENCODE cell lines. Intersecting 9640 lncRNA loci with 79,333 peptides yielded 85 unique peptides matching 69 lncRNAs. Most cases were due to a coding transcript misannotated as lncRNA. Two exceptions were an unprocessed pseudogene and a bona fide lncRNA gene, both with open reading frames (ORFs) compromised by upstream stop codons. All potentially translatable lncRNA ORFs had only a single peptide match, indicating low protein abundance and/or false-positive peptide matches. We conclude that with very few exceptions, ribosomes are able to distinguish coding from noncoding transcripts and, hence, that ectopic translation and cryptic mRNAs are rare in the human lncRNAome.


Science | 2013

Extensive variation in chromatin states across humans.

Maya Kasowski; Sofia Kyriazopoulou-Panagiotopoulou; Fabian Grubert; Judith B. Zaugg; Anshul Kundaje; Yuling Liu; Alan P. Boyle; Qiangfeng Cliff Zhang; Fouad Zakharia; Damek V. Spacek; Jingjing Li; Dan Xie; Anthony O. Olarerin-George; Lars M. Steinmetz; John B. Hogenesch; Manolis Kellis; Serafim Batzoglou; Michael Snyder

DNA Differences The extent to which genetic variation affects an individuals phenotype has been difficult to predict because the majority of variation lies outside the coding regions of genes. Now, three studies examine the extent to which genetic variation affects the chromatin of individuals with diverse ancestry and genetic variation (see the Perspective by Furey and Sethupathy). Kasowski et al. (p. 750, published online 17 October) examined how genetic variation affects differences in chromatin states and their correlation to histone modifications, as well as more general DNA binding factors. Kilpinen et al. (p. 744, published online 17 October) document how genetic variation is linked to allelic specificity in transcription factor binding, histone modifications, and transcription. McVicker et al. (p. 747, published online 17 October) identified how quantitative trait loci affect histone modifications in Yoruban individuals and established which specific transcription factors affect such modifications. Variability among humans with different ancestry affects chromatin states and gene expression. [Also see Perspective by Furey and Sethupathy] The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.


Nature | 2015

Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer/'s disease

Elizabeta Gjoneska; Andreas R. Pfenning; Hansruedi Mathys; Gerald Quon; Anshul Kundaje; Li-Huei Tsai; Manolis Kellis

Alzheimer’s disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.


Genome Biology | 2012

Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors

Kevin Y. Yip; Chao Cheng; Nitin Bhardwaj; James B. Brown; Jing Leng; Anshul Kundaje; Joel Rozowsky; Ewan Birney; Peter J. Bickel; Michael Snyder; Mark Gerstein

BackgroundTranscription factors function by binding different classes of regulatory elements. The Encyclopedia of DNA Elements (ENCODE) project has recently produced binding data for more than 100 transcription factors from about 500 ChIP-seq experiments in multiple cell types. While this large amount of data creates a valuable resource, it is nonetheless overwhelmingly complex and simultaneously incomplete since it covers only a small fraction of all human transcription factors.ResultsAs part of the consortium effort in providing a concise abstraction of the data for facilitating various types of downstream analyses, we constructed statistical models that capture the genomic features of three paired types of regions by machine-learning methods: firstly, regions with active or inactive binding; secondly, those with extremely high or low degrees of co-binding, termed HOT and LOT regions; and finally, regulatory modules proximal or distal to genes. From the distal regulatory modules, we developed computational pipelines to identify potential enhancers, many of which were validated experimentally. We further associated the predicted enhancers with potential target transcripts and the transcription factors involved. For HOT regions, we found a significant fraction of transcription factor binding without clear sequence motifs and showed that this observation could be related to strong DNA accessibility of these regions.ConclusionsOverall, the three pairs of regions exhibit intricate differences in chromosomal locations, chromatin features, factors that bind them, and cell-type specificity. Our machine learning approach enables us to identify features potentially general to all transcription factors, including those not included in the data.


Cell | 2014

H3K4me3 Breadth Is Linked to Cell Identity and Transcriptional Consistency

Bérénice A. Benayoun; Elizabeth A. Pollina; Duygu Ucar; Salah Mahmoudi; Kalpana Karra; Edith D. Wong; Keerthana Devarajan; Aaron C. Daugherty; Anshul Kundaje; Elena Mancini; Benjamin C. Hitz; Rakhi Gupta; Thomas A. Rando; Julie C. Baker; Michael Snyder; J. Michael Cherry; Anne Brunet

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.

Collaboration


Dive into the Anshul Kundaje's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manolis Kellis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge