Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anson W. K. Ma is active.

Publication


Featured researches published by Anson W. K. Ma.


Science | 2013

Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity

Natnael Behabtu; Colin C. Young; Dmitri E. Tsentalovich; Olga Kleinerman; Xuan Wang; Anson W. K. Ma; E. Amram Bengio; Ron ter Waarbeek; Jorrit J. de Jong; Ron E. Hoogerwerf; Steven B. Fairchild; John B. Ferguson; Benji Maruyama; Junichiro Kono; Yeshayahu Talmon; Yachin Cohen; Marcin Jan Otto; Matteo Pasquali

Optimizing Carbon Nanotubes Shorter carbon nanotubes are easier to make, but, when assembled into fibers, the resulting fiber properties are much poorer than might be predicted by theory. Conversely, longer carbon nanotubes have much better properties but are harder to process. Behabtu et al. (p. 182) combined the best of both worlds through scalable wet spinning method, in which they dissolved longer carbon nanotubes and then spun them into fibers that showed excellent strength, stiffness, and thermal conductivity. Exceptional carbon nanotube fibers are produced by a wet spinning process using longer nanotubes as feedstock. Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.


ACS Nano | 2012

High-Performance Carbon Nanotube Transparent Conductive Films by Scalable Dip Coating

Francesca Mirri; Anson W. K. Ma; Tienyi T. Hsu; Natnael Behabtu; Shannon L. Eichmann; Colin C. Young; Dmitri E. Tsentalovich; Matteo Pasquali

Transparent conductive carbon nanotube (CNT) films were fabricated by dip-coating solutions of pristine CNTs dissolved in chlorosulfonic acid (CSA) and then removing the CSA. The film performance and morphology (including alignment) were controlled by the CNT length, solution concentration, coating speed, and level of doping. Using long CNTs (∼10 μm), uniform films were produced with excellent optoelectrical performance (∼100 Ω/sq sheet resistance at ∼90% transmittance in the visible), in the range of applied interest for touch screens and flexible electronics. This technique has potential for commercialization because it preserves the length and quality of the CNTs (leading to enhanced film performance) and operates at high CNT concentration and coating speed without using surfactants (decreasing production costs).


Journal of Rheology | 2009

The rheology and modeling of chemically treated carbon nanotubes suspensions

Anson W. K. Ma; Francisco Chinesta; Malcolm R. Mackley

This paper reports recent experimental findings and rheological modeling on chemically treated single-walled carbon nanotubes (CNTs) suspended within an epoxy resin. When a CNT suspension was subject to a steady shear flow, it exhibited a shear-thinning characteristic, which was subsequently modeled by a Fokker–Planck (FP) based orientation model. The model assumes that the shear flow aligns CNT in the flow direction, but there are events such as Brownian motion and tube–tube interaction trying to randomize the orientation. In the FP orientation model, randomizing events were modeled with an appropriate rotary diffusion coefficient (Dr) and the shear-thinning behavior was explained in terms of progressive alignment of CNTs toward the shear direction. In terms of linear viscoelasticity (LVE), small-amplitude oscillatory measurements revealed mild elasticity for semidilute treated CNT suspensions. The exact origin for this elasticity is not clear and both tube–tube interaction and bending/stretching of CNTs...


ACS Applied Materials & Interfaces | 2014

Facile Synthesis of Co3O4@CNT with High Catalytic Activity for CO Oxidation under Moisture-Rich Conditions

Chung-Hao Kuo; Weikun Li; Wenqiao Song; Zhu Luo; Altug S. Poyraz; Yang Guo; Anson W. K. Ma; Steven L. Suib; Jie He

The catalytic oxidation reaction of CO has recently attracted much attention because of its potential applications in the treatment of air pollutants. The development of inexpensive transition metal oxide catalysts that exhibit high catalytic activities for CO oxidation is in high demand. However, these metal oxide catalysts are susceptible to moisture, as they can be quickly deactivated in the presence of trace amounts of moisture. This article reports a facile synthesis of highly active Co3O4@CNT catalysts for CO oxidation under moisture-rich conditions. Our synthetic routes are based on the in situ growth of ultrafine Co3O4 nanoparticles (NPs) (∼2.5 nm) on pristine multiwalled CNTs in the presence of polymer surfactant. Using a 1% CO and 2% O2 balanced in N2 (normal) feed gas (3-10 ppm moisture), a 100% CO conversion with Co3O4@CNT catalysts was achieved at various temperatures ranging from 25 to 200 °C at a low O2 concentration. The modulation of surface hydrophobicity of CNT substrates, other than direct surface modification on the Co3O4 catalytic centers, is an efficient method to enhance the moisture resistance of metal oxide catalysts for CO oxidation. After introducing fluorinated alkyl chains on CNT surfaces, the superhydrophobic Co3O4@CNT exhibited outstanding activity and durability at 150 °C in the presence of moisture-saturated feed gas. These materials may ultimately present new opportunities to improve the moisture resistance of metal oxide catalysts for CO oxidation.


Aaps Pharmscitech | 2014

Particle Margination and Its Implications on Intravenous Anticancer Drug Delivery

Erik J. Carboni; Katherine Tschudi; Jaewook Nam; Xiuling Lu; Anson W. K. Ma

Abstract“Margination” refers to the movement of particles in flow toward the walls of a channel. The term was first coined in physiology for describing the behavior of white blood cells (WBCs) and platelets in blood flow. The margination of particles is desirable for anticancer drug delivery because it results in the close proximity of drug-carrying particles to the endothelium, where they can easily diffuse into cancerous tumors through the leaky vasculature. Understanding the fundamentals of margination may further lead to the rational design of particles and allow for more specific delivery of anticancer drugs into tumors, thereby increasing patient comfort during cancer treatment. This paper reviews existing theoretical and experimental studies that focus on understanding margination. Margination is a complex phenomenon that depends on the interplay between inertial, hydrodynamic, electrostatic, lift, van der Waals, and Brownian forces. Parameters that have been explored thus far include the particle size, shape, density, stiffness, shear rate, and the concentration and aggregation state of red blood cells (RBCs). Many studies suggested that there exists an optimal particle size for margination to occur, and that nonspherical particles tend to marginate better than spherical particles. There are, however, conflicting views on the effects of particle density, stiffness, shear rate, and RBCs. The limitations of using the adhesion of particles to the channel walls in order to quantify margination propensity are explained, and some outstanding questions for future research are highlighted.


Journal of Applied Physics | 2013

Structural and band alignment properties of Al2O3 on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

Mantu K. Hudait; Yizheng Zhu; Deepam Maurya; Shashank Priya; Prabir Patra; Anson W. K. Ma; Ashish Aphale; Isaac Macwan

Structural and band alignment properties of atomic layer Al2O3 oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al2O3 film and the Ge epilayer. The extracted valence band offset, ΔEv, values of Al2O3 relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in ΔEv related to the crystallographic orientation were ΔEV(110)Ge>ΔEV(100)Ge≥ΔEV(111)Ge and the conduction band offset, ΔEc, related t...


Rapid Prototyping Journal | 2017

Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance

Yang Guo; Huseini S. Patanwala; Brice Bognet; Anson W. K. Ma

Purpose This paper aims to summarize the latest developments both in terms of theoretical understanding and experimental techniques related to inkjet fluids. The purpose is to provide practitioners a self-contained review of how the performance of inkjet and inkjet-based three-dimensional (3D) printing is fundamentally influenced by the properties of inkjet fluids. Design/methodology/approach This paper is written for practitioners who may not be familiar with the underlying physics of inkjet printing. The paper thus begins with a brief review of basic concepts in inkjet fluid characterization and the relevant dimensionless groups. Then, how drop impact and contact angle affect the footprint and resolution of inkjet printing is reviewed, especially onto powder and fabrics that are relevant to 3D printing and flexible electronics applications. A future outlook is given at the end of this review paper. Findings The jettability of Newtonian fluids is well-studied and has been generalized using a dimensionless Ohnesorge number. However, the inclusion of various functional materials may modify the ink fluid properties, leading to non-Newtonian behavior, such as shear thinning and elasticity. This paper discusses the current understanding of common inkjet fluids, such as particle suspensions, shear-thinning fluids and viscoelastic fluids. Originality/value A number of excellent review papers on the applications of inkjet and inkjet-based 3D printing already exist. This paper focuses on highlighting the current scientific understanding and possible future directions.


Biophysical Journal | 2016

Direct Tracking of Particles and Quantification of Margination in Blood Flow

Erik J. Carboni; Brice Bognet; Grant M. Bouchillon; Andrea L. Kadilak; Leslie M. Shor; Michael D. Ward; Anson W. K. Ma

Margination refers to the migration of particles toward blood vessel walls during blood flow. Understanding the mechanisms that lead to margination will aid in tailoring the attributes of drug-carrying particles for effective drug delivery. Most previous studies evaluated the margination propensity of these particles via an adhesion mechanism, i.e., by measuring the number of particles that adhered to the channel wall. Although particle adhesion and margination are related, adhesion also depends on other factors. In this study, we quantified the margination propensity of particles of varying diameters (0.53, 0.84, and 2.11 μm) and apparent wall shear rates (30, 61, and 121 s-1) by directly tracking fluorescent particles flowing through a microfluidic channel. The margination parameter, M, is defined as the total number of particles found within the cell-free layers normalized by the total number of particles that passed through the channel. In this study, an M-value of 0.2 indicated no margination, which was observed for all particle sizes in water. In the case of blood, larger particles were found to have higher M-values and thus marginated more effectively than smaller particles. The corresponding M-values at the device outlet were 0.203, 0.223, and 0.285 for 0.53-, 0.84-, and 2.11-μm particles, respectively. At the inlet, the M-values for all particle sizes in blood were <0.2, suggesting that non-fully-developed flow and constriction may lead to demargination. For particle velocities transverse to the flow direction (vy), all particle sizes showed a larger standard deviation of vy as well as a higher effective diffusivity when the particles were suspended in blood relative to water. These higher values are attributed to collisions between the blood cells and particles, further supporting recent simulation results. In terms of flow rates, for a given particle size, the higher the flow rate, the higher the M-value.


Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems | 2008

A review of the microstructure and rheology of carbon nanotube suspensions

Anson W. K. Ma; K M Yearsley; Francisco Chinesta; Malcolm R. Mackley

The present review is concerned with the way that the incorporation of carbon nanotubes (CNTs) into a fluid matrix can modify the microstructure and rheology of the resulting suspensions. Some background to CNT manufacture and in particular methods of dispersing them into a suspension is presented for a range of different systems, where effective dispersion of CNTs remains a delicate and open issue. Steady shear, linear viscoelasticity, non-linear viscoelasticity and extensional responses are classified for a range of different CNT/matrix combinations together with their associated microstructure. The rheological modelling of certain CNT/matrix systems is reviewed, with particular attention given to the authors’ work on modelling CNT suspension behaviour using Fokker—Planck advection-diffusion modelling.


RSC Advances | 2016

Self-healing of thermally-induced, biocompatible and biodegradable protein hydrogel

Jun Chen; Xiaoyu Ma; Qiuchen Dong; Donghui Song; Derek Hargrove; Sahil R. Vora; Anson W. K. Ma; Xiuling Lu; Yu Lei

Serum albumin is the most abundant protein in the circulatory system to transport fatty acids, metabolites and drugs. In this study, a highly biocompatible protein hydrogel was prepared from bovine serum albumin (BSA) via thermal treatment. A circular dichroism study indicates that thermally-induced partial unfolding of the protein molecules exposes the buried hydrophobic groups in the core to the environment, thus leading to the formation of fine stranded 3-D networks. By controlling the heating temperature and protein concentration, the mechanical strength and structural stability of the as-prepared BSA hydrogel can be facilely manipulated. The moderate denaturation of the protein within the hydrogel system allows repetitive self-healing after damage when moderate heat was induced. The tensile strength and break strain of fully healed protein hydrogel were recovered to almost 100% of the original strength and elongation abilities. Additionally, the good biocompatibility of this hydrogel system was demonstrated through in vitro cytotoxicity analysis first. Furthermore, in vivo experiments using immunocompetent mice show that the subcutaneously injected hydrogel in mice can be fully degraded with negligible acute inflammatory response, indicating excellent in vivo biocompatibility. These features indicate that the as-developed self-healing protein hydrogel system with good biocompatibility and biodegradability holds great potential in the field of biomedical engineering.

Collaboration


Dive into the Anson W. K. Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Chinesta

Conservatoire national des arts et métiers

View shared research outputs
Top Co-Authors

Avatar

Brice Bognet

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sahil R. Vora

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Cruz

Arts et Métiers ParisTech

View shared research outputs
Researchain Logo
Decentralizing Knowledge