Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anssi Järvinen is active.

Publication


Featured researches published by Anssi Järvinen.


Environmental Science & Technology | 2016

Physical and Chemical Characterization of Real-World Particle Number and Mass Emissions from City Buses in Finland.

Liisa Pirjola; Aleš Dittrich; Jarkko V. Niemi; Sanna Saarikoski; Hilkka Timonen; Heino Kuuluvainen; Anssi Järvinen; Anu Kousa; Topi Rönkkö; Risto Hillamo

Exhaust emissions of 23 individual city buses at Euro III, Euro IV and EEV (Enhanced Environmentally Friendly Vehicle) emission levels were measured by the chasing method under real-world conditions at a depot area and on the normal route of bus line 24 in Helsinki. The buses represented different technologies from the viewpoint of engines, exhaust after-treatment systems (ATS) and fuels. Some of the EEV buses were fueled by diesel, diesel-electric, ethanol (RED95) and compressed natural gas (CNG). At the depot area the emission factors were in the range of 0.3-21 × 10(14) # (kg fuel)(-1), 6-40 g (kg fuel)(-1), 0.004-0.88 g (kg fuel)(-1), 0.004-0.56 g (kg fuel)(-1), 0.01-1.2 g (kg fuel)(-1), for particle number (EFN), nitrogen oxides (EFNOx), black carbon (EFBC), organics (EFOrg), and particle mass (EFPM1), respectively. The highest particulate emissions were observed from the Euro III and Euro IV buses and the lowest from the ethanol and CNG-fueled buses, which emitted BC only during acceleration. The organics emitted from the CNG-fueled buses were clearly less oxidized compared to the other bus types. The bus line experiments showed that lowest emissions were obtained from the ethanol-fueled buses whereas large variation existed between individual buses of the same type indicating that the operating conditions by drivers had large effect on the emissions.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Traffic is a major source of atmospheric nanocluster aerosol

Topi Rönkkö; Heino Kuuluvainen; Panu Karjalainen; Jorma Keskinen; Risto Hillamo; Jarkko V. Niemi; Liisa Pirjola; Hilkka Timonen; Sanna Saarikoski; Erkka Saukko; Anssi Järvinen; Henna Silvennoinen; Antti Rostedt; Miska Olin; Jaakko Yli-Ojanperä; Pekka Nousiainen; Anu Kousa; Miikka Dal Maso

Significance We report the significant presence of traffic-originated nanocluster aerosol (NCA) particles in a particle diameter range of 1.3–3.0 nm of urban air, determine the emission factors for the NCA, and evaluate its global importance. Our findings are important because they significantly update the current understanding of atmospheric aerosol in urban areas. They demonstrate that in urban air, extremely small particles form a significant fraction of the total particle number and are a direct result of anthropogenic emissions, that is, the emissions from road traffic. Thus, our findings also imply that in urban areas, an atmospheric nucleation process is not necessary for the formation of a large number of particles that affect population health and climate. In densely populated areas, traffic is a significant source of atmospheric aerosol particles. Owing to their small size and complicated chemical and physical characteristics, atmospheric particles resulting from traffic emissions pose a significant risk to human health and also contribute to anthropogenic forcing of climate. Previous research has established that vehicles directly emit primary aerosol particles and also contribute to secondary aerosol particle formation by emitting aerosol precursors. Here, we extend the urban atmospheric aerosol characterization to cover nanocluster aerosol (NCA) particles and show that a major fraction of particles emitted by road transportation are in a previously unmeasured size range of 1.3–3.0 nm. For instance, in a semiurban roadside environment, the NCA represented 20–54% of the total particle concentration in ambient air. The observed NCA concentrations varied significantly depending on the traffic rate and wind direction. The emission factors of NCA for traffic were 2.4·1015 (kgfuel)−1 in a roadside environment, 2.6·1015 (kgfuel)−1 in a street canyon, and 2.9·1015 (kgfuel)−1 in an on-road study throughout Europe. Interestingly, these emissions were not associated with all vehicles. In engine laboratory experiments, the emission factor of exhaust NCA varied from a relatively low value of 1.6·1012 (kgfuel)−1 to a high value of 4.3·1015 (kgfuel)−1. These NCA emissions directly affect particle concentrations and human exposure to nanosized aerosol in urban areas, and potentially may act as nanosized condensation nuclei for the condensation of atmospheric low-volatile organic compounds.


Aerosol Science and Technology | 2017

Particle charge-size distribution measurement using a differential mobility analyzer and an electrical low pressure impactor

Anssi Järvinen; P. Heikkilä; Jorma Keskinen; Jaakko Yli-Ojanperä

ABSTRACT We introduce a particle charge-size distribution measurement method using a differential mobility analyzer and an electrical low pressure impactor in tandem configuration. The main advantage of this type of measurement is that it is suitable for a wide range of particle sizes, from approximately 30 nm up to a micrometer, and for high charge levels, which have been problematic for previously used methods. The developed charge measurement method requires information on the particle effective density, and the accuracy of the measurement is dependent on how well the particle effective density is known or estimated. We introduce the measurement and calculation procedures and test these in laboratory conditions. The developed method has been tested using narrow and wide particle size distributions of a known density and well-defined particle charging states. The particles have been produced by the Singly Charged Aerosol Reference (SCAR) and an atomizer and charged with the previously well-characterized unipolar diffusion chargers used in the Nanoparticle Surface Area Monitor (NSAM) and in the Electrical Low Pressure Impactor (ELPI+). The acquired charge-size distributions are in good agreement with the reference values in terms of the median charge levels and widths of the charge distributions. Copyright


Aerosol Science and Technology | 2017

The effect of materials and obliquity of the impact on the critical velocity of rebound

Heino Kuuluvainen; Anssi Arffman; Anssi Järvinen; Juha Harra; Jorma Keskinen

ABSTRACT The critical velocity of rebound was determined for spherical ammonium fluorescein particles in the size range of 0.44–7.3 μm. The method was based on measurements with a variable nozzle area impactor (VNAI) and numerical simulations. A comparison to previous results with spherical silver particles obtained with the same method showed that the critical velocity was approximately two orders of magnitude higher for ammonium fluorescein than for silver at the same size range. Among the hard test materials, including steel, aluminium, molybdenum, and Tedlar, the surface material had no significant effect on the critical velocity of rebound within the accuracy of the method. On the contrary, the critical velocity was observed to be highly dependent on the obliquity of the impact at the onset of rebound. While the ratio of the maximum tangential and normal velocities was defined as a measure for the obliquity, the critical velocity was found to be more than a magnitude smaller for very oblique impacts with the velocity ratio above 9 than for close-to-normal impacts with the velocity ratio below 1.5. The results of this study can be considered as a link between the recently published critical velocity results for nanoparticles and the older results for micron-sized particles. Copyright


Environmental Pollution | 2018

Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon

Heino Kuuluvainen; Mikko Poikkimäki; Anssi Järvinen; Joel Kuula; Matti Irjala; Miikka Dal Maso; Jorma Keskinen; Hilkka Timonen; Jarkko V. Niemi; Topi Rönkkö

The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm2/cm3 measured close to the ground level to 36-40 μm2/cm3 measured close to the rooftop level of the street canyon, and further to 16-26 μm2/cm3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon.


Aerosol Science and Technology | 2018

Extending the Faraday cup aerosol electrometer based calibration method up to 5 µm

Anssi Järvinen; Jorma Keskinen; Jaakko Yli-Ojanperä

Abstract A Faraday cup aerosol electrometer based electrical aerosol instrument calibration setup from nanometers up to micrometers has been designed, constructed, and characterized. The set-up utilizes singly charged seed particles, which are grown to the desired size by condensation of diethylhexyl sebacate. The calibration particle size is further selected with a Differential Mobility Analyzer (DMA). For micrometer sizes, a large DMA was designed, constructed, and characterized. The DMA electrical mobility resolution was found to be 7.95 for 20 L/min sheath and 2 L/min sample flows. The calibration is based on comparing the instrument’s response against the concentration measured with a reference Faraday cup aerosol electrometer. The set-up produces relatively high concentrations in the micrometer size range (more than 2500 1/cm3 at 5.3 µm). A low bias flow mixing and splitting between the reference and the instrument was constructed from a modified, large-sized mixer and a four-port flow splitter. It was characterized at different flow rates and as a function of the particle size. Using two of the four outlet ports at equal 1.5 L/min flow rates, the particle concentration bias of the flow splitting was found to be less than ±1% in the size range of 3.6 nm–5.3 µm. The developed calibration set-up was used to define the detection efficiency of a condensation particle counter from 3.6 nm to 5.3 µm with an expanded measurement uncertainty (k = 2) of less than 4% over the entire size range and less than 2% for most of the measurement points. Copyright


Journal of Aerosol Science | 2014

Calibration of the new electrical low pressure impactor (ELPI

Anssi Järvinen; M. Aitomaa; Antti Rostedt; Jorma Keskinen; Jaakko Yli-Ojanperä


Aerosol and Air Quality Research | 2015

Seasonal and Diurnal Variations of Fluorescent Bioaerosol Concentration and Size Distribution in the Urban Environment

Sampo Saari; Topi Rönkkö; Heino Kuuluvainen; Anssi Järvinen; Liisa Pirjola; Minna Aurela; Risto Hillamo; Jorma Keskinen


Journal of Aerosol Science | 2014

Bipolar Charge Analyzer (BOLAR): A new aerosol instrument for bipolar charge measurements

Jaakko Yli-Ojanperä; Ari Ukkonen; Anssi Järvinen; Steve Layzell; Ville Niemelä; Jorma Keskinen


urban climate | 2015

Monitoring urban air quality with a diffusion charger based electrical particle sensor

Anssi Järvinen; Heino Kuuluvainen; Jarkko V. Niemi; S. Saari; M. Dal Maso; Liisa Pirjola; R. Hillamo; Kauko Janka; Jorma Keskinen; Topi Rönkkö

Collaboration


Dive into the Anssi Järvinen's collaboration.

Top Co-Authors

Avatar

Jorma Keskinen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Heino Kuuluvainen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Topi Rönkkö

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jaakko Yli-Ojanperä

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Risto Hillamo

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Hilkka Timonen

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Miikka Dal Maso

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar

Antti Rostedt

Tampere University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge