Anssi Karvonen
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anssi Karvonen.
Animal Behaviour | 2004
Otto Seppälä; Anssi Karvonen; E. Tellervo Valtonen
Abstract Trophically transmitted parasites may increase their transmission efficiency by altering the behaviour of infected hosts to increase their susceptibility to predation by target hosts (the next host in the life cycle). The parasite Diplostomum spathaceum (Trematoda) reduces the vision of its fish intermediate hosts: its metacercariae lodge themselves in the eyes of fish and induce cataract formation, which gives them the opportunity to affect fish behaviour. We examined whether D. spathaceum eye flukes change the preference of fish for the surface layers of the water column or their escape behaviour, which could make the fish more vulnerable to predation by bird hosts. We also studied the influence of parasites on the susceptibility of fish to artificial aerial predators that were able to catch fish from the water surface. Infected and control fish did not differ in their preference for the surface layers but infected fish showed less escape behaviour when a black plate was drawn over the water surface. They were also more easily caught by human ‘predators’ dipping a net into the tank. Thus, infected fish should be easier prey for gulls and terns, implying that the ability of D. spathaceum eye flukes to alter fish behaviour may be a parasite strategy evolved to enhance transmission.
Animal Behaviour | 2005
Otto Seppälä; Anssi Karvonen; E. Tellervo Valtonen
Trophically transmitted parasites may predispose infected hosts to predation by altering host behaviour, which can be either an adaptation of the parasites to enhance transmission to the next hosts in the life cycle or a nonadaptive side-effect of infection. In an experimental study, we investigated host manipulation by Diplostomum spathaceum (Trematoda), an eye fluke of fish, to evaluate its adaptive value as a parasite strategy to increase transmission efficiency to bird hosts. The parasite induces cataract formation in the lenses of fish eyes, and predisposes fish to predation by reducing their escape response. We examined the effect of developmental stage and the number of parasites on parasite-induced cataract formation and the susceptibility of rainbow trout, Oncorhynchus mykiss, to simulated predation (capture by dip-net). We found that the catchability of fish increased with the coverage of parasite-induced cataract. Furthermore, cataract formation was most intensive after eye flukes had completed their development, and host manipulation took place only when parasites were infective to birds and thus capable of being transmitted. Intensity of infection, however, did not affect vulnerability of fish to capture by dip-net. These findings suggest that the ability of the parasite to manipulate fish behaviour by impairing its vision may have resulted from selection preferring parasite genotypes with higher transmission efficiency.
International Journal for Parasitology | 2010
Anssi Karvonen; Päivi Rintamäki; Jukka Jokela; E. Tellervo Valtonen
Global warming may impose severe risks for aquatic animal health if increasing water temperature leads to an increase in the incidence of parasitic diseases. Essentially, this could take place through a temperature-driven effect on the epidemiology of the disease. For example, higher temperature may boost the rate of disease spread through positive effects on parasite fitness in a weakened host. Increased temperature may also lengthen the transmission season leading to higher total prevalence of infection and more widespread epidemics. However, to date, general understanding of these relationships is limited due to scarcity of long-term empirical data. Here, we present one of the first long-term multi-pathogen data sets on the occurrence of pathogenic bacterial and parasitic infections in relation to increasing temperatures in aquatic systems. We analyse a time-series of disease dynamics on two fish farms in northern Finland from 1986 to 2006. We first demonstrate that the annual mean water temperature increased significantly on both farms over the study period and that the increase was most pronounced in the late summer (July-September). Second, we show that the prevalence of infection (i.e. proportion of fish tanks infected each year) increased with temperature. Interestingly, this pattern was observed in some of the diseases (Ichthyophthirius multifiliis, Flavobacterium columnare), whereas in the other diseases, the pattern was the opposite (Ichthyobodo necator) or absent (Chilodonella spp.). These results demonstrate the effect of increasing water temperature on aquatic disease dynamics, but also emphasise the importance of the biology of each disease, as well as the role of local conditions, in determining the direction and magnitude of these effects.
Parasitology | 2004
Anssi Karvonen; Otto Seppälä; E. T. Valtonen
This paper examines the efficiency of acquired resistance in protecting the fish host, rainbow trout (Oncorhynchus mykiss), against the trematode parasite Diplostomum spathaceum, and the hypothesis that fish recognize areas where infective stages are aggregated and show avoidance behaviour. We found that when fish with a low level of infection were held in restricted cages in natural conditions they became infected and developed cataracts as a result of this infection. This suggests that acquired resistance is insufficient in protecting fish against the parasite or the deleterious effects of infection in conditions where fish could not avoid the parasite. Behavioural experiments in the laboratory showed that fish reacted to the parasite cercariae by avoiding the infection source, which decreased the rate of parasite establishment. We conclude that by using a combination of behavioural avoidance and physiological resistance, fish could defend against the parasite more effectively.
Parasitology | 2004
Anssi Karvonen; Otto Seppälä; E. T. Valtonen
We examined the parasite-induced cataract formation in rainbow trout (Oncorhynchus mykiss) using slit-lamp microscopy to determine the relationship between cataract intensity and number of Diplostomum spathaceum parasites that were established in the lens. Cataract intensity increased significantly with parasite burden, but was also affected by the pattern of exposure to the parasite cercariae. The slit-lamp methodology proved useful in scoring the cataracts since it provides a 3-dimensional view into the lens and gives an actual picture of the location and intensity of the cataracts, which allows detailed investigations of mechanisms underlying cataract formation in various fish species. Potential applications of the method in fish farming and parasitological studies are discussed.
Parasitology | 2003
Anssi Karvonen; S. Paukku; E. T. Valtonen; Peter J. Hudson
The transmission dynamics of the cercariae of Diplostomum spathaceum were investigated under laboratory conditions using cercariae collected from naturally infected Lymnaea stagnalis. Cercariae were kept in a constant temperature of 20 degrees C and the survival and infectivity to naïve young rainbow trout recorded at 3-h intervals until few cercariae were alive. Mortality initially remained constant but increased rapidly after 20 h. While a model of constant mortality fitted the survival data, an age-dependent model provided a better fit and implied that cercariae tended to carry similar quantities of resources and once these were exhausted the cercariae died. Cercarial infectivity also showed an age-dependent pattern although infectivity tended (P = 0.09) to increase with age over the first 6 h of life and then fall. The per capita transmission rate of cercariae was investigated by experimentally infecting rainbow trout under standardized conditions, first with an increasing cercarial density and second, by keeping density constant but increasing numbers of cercariae. The per capita transmission rate was frequency dependent and averaged 0.341/h (+/- 0.036).
Parasitology | 2004
Anssi Karvonen; S. Kirsi; Peter J. Hudson; E. T. Valtonen
In the production of the infective cercariae of trematodes, the terminal investment hypothesis of life-history theory predicts that the rate of host exploitation and cercarial production should increase during the period of cercarial shedding since the reproductive value of the parasite decreases during this period. In contrast, a bet hedging hypothesis that focuses on the success of transmission when host contact rate is variable predicts that cercarial production should decrease in an attempt to keep the host alive for longer and thus would increase the probability of successful transmission. We examined these two hypotheses under laboratory conditions and recorded the production of Diplostomum spathaceum cercariae from naturally infected snail hosts, Lymnaea stagnalis. The average number of cercariae produced per day decreased as the snail host approached death counter to the terminal investment hypothesis. The finding supports the prediction of the bet hedging hypothesis and implies that the pattern of cercarial production may be explained by reduced virulence of the parasite within the snails to ensure extended total production time of cercariae. Nevertheless, survival of infected snails was still lower than uninfected snails suggesting that ultimately the infection still increased snail mortality rate. Cercarial production varied between days but was not cyclic, probably because of the physiology of the sporocysts within snails. Fewer cercariae were released at night, which may increase transmission efficiency to diurnally-active fish hosts. The mechanisms associated with daily cercarial production are discussed.
Infection, Genetics and Evolution | 2010
Katja-Riikka Louhi; Anssi Karvonen; Christian Rellstab; Jukka Jokela
Due to their particular way of life, dispersal of parasites is often mediated by their hosts biology. Dispersal distance is relevant for parasites because high degree of dispersal leads to high gene flow, which counters the rate of parasite local adaptation in the host populations. Parasites with complex life cycles need to exploit sequentially more than one host species to complete their life cycle. Most trematode parasites have such complex life cycles involving invertebrate and vertebrate hosts. The spatial scales of invertebrate and vertebrate host populations are often different, which may decrease the probability that the parasite cycles locally in the intermediate host population. We used neutral microsatellite markers to determine genetic structure in Diplostomum pseudospathaceum parasites collected from local populations of freshwater snails (Lymnaea stagnalis). D. pseudospathaceum is a trematode that has two intermediate hosts (snail and fish) and a highly motile definitive host (bird). We found that the parasite population infecting the local snail populations showed no genetic structure over a large geographic range (over 300km). We also did not detect evidence for isolation by distance in the parasite. We conclude that dispersal in the motile definitive host is likely to prevent emergence of local population genetic structure in the parasite. Our results suggest that parasite dispersal in the definitive host may limit local cycling of the parasites in the intermediate host populations.
International Journal of Ecology | 2012
Anssi Karvonen; Ole Seehausen
Research on speciation and adaptive radiation has flourished during the past decades, yet factors underlying initiation of reproductive isolation often remain unknown. Parasites represent important selective agents and have received renewed attention in speciation research. We review the literature on parasite-mediated divergent selection in context of ecological speciation and present empirical evidence for three nonexclusive mechanisms by which parasites might facilitate speciation: reduced viability or fecundity of immigrants and hybrids, assortative mating as a pleiotropic by-product of host adaptation, and ecologically-based sexual selection. We emphasise the lack of research on speciation continuums, which is why no study has yet made a convincing case for parasite driven divergent evolution to initiate the emergence of reproductive isolation. We also point interest towards selection imposed by single versus multiple parasite species, conceptually linking this to strength and multifariousness of selection. Moreover, we discuss how parasites, by manipulating behaviour or impairing sensory abilities of hosts, may change the form of selection that underlies speciation. We conclude that future studies should consider host populations at variable stages of the speciation process, and explore recurrent patterns of parasitism and resistance that could pinpoint the role of parasites in imposing the divergent selection that initiates ecological speciation.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Anssi Karvonen; Christian Rellstab; Katja-Riikka Louhi; Jukka Jokela
Co-infecting parasite genotypes typically compete for host resources limiting their fitness. The intensity of such competition depends on whether parasites are reproducing in a host, or using it primarily as a transmission vehicle while not multiplying in host tissues (referred to as ‘competition hypothesis’). Alternatively, simultaneous attack and co-infection by several parasite genotypes might facilitate parasite infection because such a diverse attack could present an additional challenge to host immune defence (referred to as ‘facilitation hypothesis’). We tested the competition hypothesis by comparing the production of transmission stages (cercariae) from snails infected with one or two genotypes of the trematode Diplostomum pseudospathaceum. We found that cercarial production did not differ between the two groups of snails, suggesting lower per genotype production in double infections, and competition for host resources. Second, we tested the facilitation hypothesis by comparing parasite infection success on fishes (proportion of parasites establishing in the host) using cercariae originating from single-infected snails, double-infected snails and artificial mixtures of the single genotypes. In both cases, we found higher infection success when fishes were challenged with two parasite genotypes instead of one, supporting the facilitation hypothesis. Our results suggest that constraints defining the success of multiple genotype infections in parasites with multiple host life cycles include both between-genotype resource competition in the host and performance of host immune defences against a diverse parasite challenge.