Ante Obad
University of Split
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ante Obad.
The Journal of Physiology | 2005
Alf O. Brubakk; Darko Duplančić; Zoran Valic; Ivan Palada; Ante Obad; Darija Bakovic; Ulrik Wisløff; Zeljko Dujic
During and after decompression from dives, gas bubbles are regularly observed in the right ventricular outflow tract. A number of studies have documented that these bubbles can lead to endothelial dysfunction in the pulmonary artery but no data exist on the effect of diving on arterial endothelial function. The present study investigated if diving or oxygen breathing would influence endothelial arterial function in man. A total of 21 divers participated in this study. Nine healthy experienced male divers with a mean age of 31 ± 5 years were compressed in a hyperbaric chamber to 280 kPa at a rate of 100 kPa min−1 breathing air and remaining at pressure for 80 min. The ascent rate during decompression was 9 kPa min−1 with a 7 min stop at 130 kPa (US Navy procedure). Another group of five experienced male divers (31 ± 6 years) breathed 60% oxygen (corresponding to the oxygen tension of air at 280 kPa) for 80 min. Before and after exposure, endothelial function was assessed in both groups as flow‐mediated dilatation (FMD) by ultrasound in the brachial artery. The results were compared to data obtained from a group of seven healthy individuals of the same age who had never dived. The dive produced few vascular bubbles, but a significant arterial diameter increase from 4.5 ± 0.7 to 4.8 ± 0.8 mm (mean ±s.d.) and a significant reduction of FMD from 9.2 ± 6.9 to 5.0 ± 6.7% were observed as an indication of reduced endothelial function. In the group breathing oxygen, arterial diameter increased significantly from 4.4 ± 0.3 mm to 4.7 ± 0.3 mm, while FMD showed an insignificant decrease. Oxygen breathing did not decrease nitroglycerine‐induced dilatation significantly. In the normal controls the arterial diameter and FMD were 4.1 ± 0.4 mm and 7.7 ± 0.2.8%, respectively. This study shows that diving can lead to acute arterial endothelial dysfunction in man and that oxygen breathing will increase arterial diameter after return to breathing air. Further studies are needed to determine if these mechanisms are involved in tissue injury following diving.
Hypertension | 2009
Karsten Heusser; Gordan Dzamonja; Jens Tank; Ivan Palada; Zoran Valic; Darija Bakovic; Ante Obad; Vladimir Ivancev; Toni Breskovic; André Diedrich; Michael J. Joyner; Friedrich C. Luft; Jens Jordan; Zeljko Dujic
Involuntary apnea during sleep elicits sustained arterial hypertension through sympathetic activation; however, little is known about voluntary apnea, particularly in elite athletes. Their physiological adjustments are largely unknown. We measured blood pressure, heart rate, hemoglobin oxygen saturation, muscle sympathetic nerve activity, and vascular resistance before and during maximal end-inspiratory breath holds in 20 elite divers and in 15 matched control subjects. At baseline, arterial pressure and heart rate were similar in both groups. Maximal apnea time was longer in divers (1.7±0.4 versus 3.9±1.1 minutes; P<0.0001), and it was accompanied by marked oxygen desaturation (97.6±0.7% versus 77.6±13.9%; P<0.0001). At the end of apnea, divers showed a >5-fold greater muscle sympathetic nerve activity increase (P<0.01) with a massively increased pressor response compared with control subjects (9±5 versus 32±15 mm Hg; P<0.001). Vascular resistance increased in both groups, but more so in divers (79±46% versus 140±82%; P<0.01). Heart rate did not change in either group. The rise in muscle sympathetic nerve activity correlated with oxygen desaturation (r2=0.26; P<0.01) and with the increase in mean arterial pressure (r2=0.40; P<0.0001). In elite divers, breath holds for several minutes result in an excessive chemoreflex activation of sympathetic vasoconstrictor activity. Extensive sympathetically mediated peripheral vasoconstriction may help to maintain adequate oxygen supply to vital organs under asphyxic conditions that untrained subjects are not able to tolerate voluntarily. Our results are relevant to conditions featuring periodic apnea.
The Journal of Physiology | 2007
Ante Obad; Ivan Palada; Zoran Valic; Vladimir Ivancev; Darija Bakovic; Ulrik Wisløff; Alf O. Brubakk; Željko Dujić
Diving‐induced acute alterations in cardiovascular function such as arterial endothelial dysfunction, increased pulmonary artery pressure (PAP) and reduced heart function have been recently reported. We tested the effects of acute antioxidants on arterial endothelial function, PAP and heart function before and after a field dive. Vitamins C (2 g) and E (400 IU) were given to subjects 2 h before a second dive (protocol 1) and in a placebo‐controlled crossover study design (protocol 2). Seven experienced divers performed open sea dives to 30 msw with standard decompression in a non‐randomized protocol, and six of them participated in a randomized trial. Before and after the dives ventricular volumes and function and pulmonary and brachial artery function were assessed by ultrasound. The control dive resulted in a significant reduction in flow‐mediated dilatation (FMD) and heart function with increased mean PAP. Twenty‐four hours after the control dive FMD was still reduced 37% below baseline (8.1 versus 5.1%, P= 0.005), while right ventricle ejection fraction (RV‐EF), left ventricle EF and endocardial fractional shortening were reduced much less (∼2–3%). At the same time RV end‐systolic volume was increased by 9% and mean PAP by 5%. Acute antioxidants significantly attenuated only the reduction in FMD post‐dive (P < 0.001), while changes in pulmonary artery and heart function were unaffected by antioxidant ingestion. These findings were confirmed by repeating the experiments in a randomized study design. FMD returned to baseline values 72 h after the dive with pre‐dive placebo, whereas for most cardiovascular parameters this occurred earlier (24–48 h). Right ventricular dysfunction and increased PAP lasted longer. Acute antioxidants attenuated arterial endothelial dysfunction after diving, while reduction in heart and pulmonary artery function were unchanged. Cardiovascular changes after diving are not fully reversed up to 3 days after a dive, suggesting longer lasting negative effects.
Respiratory Physiology & Neurobiology | 2007
Ivan Palada; Ante Obad; Darija Bakovic; Zoran Valic; Vladimir Ivancev; Zeljko Dujic
The effects of maximal apneas on cerebral and brachial blood flow and oxygenation are unknown in humans. Middle cerebral artery blood velocity (MCAV), cerebral and muscle oxygenation (Sc(O2) and Sm(O2)) and brachial blood flow (BBF) were measured during apneas in breath-hold divers (BHD) and non-divers (ND). Brain oxyhemoglobin (O(2)Hb) was maintained in both groups until the end of apnea, whereas deoxyhemoglobin increased more in BHD. Therefore, Sc(O2) decreased more in BHD due to longer apnea duration and smaller initial MCAV increase. MCAV increased significantly more in BHD versus ND at the end of apnea. Cerebral desaturation for approximately 13% occurred at the end of apnea in BHD despite increased cerebral oxygen delivery for approximately 50%. Larger reduction in muscle O(2)Hb was found in BHD, with similar peripheral vasoconstriction. These data indicate that BHD have decreased Sc(O2) at the end of breath-hold despite large increases in MCAV. This is partly due delayed initial cerebral vasodilation. This study provides further evidence for the oxygen-conserving effect in elite divers.
Journal of Cardiovascular Pharmacology | 2006
Mladen Boban; Darko Modun; Ivana Musić; Jonatan Vukovic; Ivica Brizić; Ilza Salamunic; Ante Obad; Ivan Palada; Zeljko Dujic
By using red wine (RW), dealcoholized red wine (DARW), polyphenols-stripped red wine (PSRW), ethanol-water solution (ET), and water (W), the role of wine polyphenols, ethanol, and urate on vascular function was examined in humans (n=9 per beverage) and on isolated rat aortic rings (n=9). Healthy males randomly consumed each beverage in a cross-over design. Plasma ethanol, catechin, and urate concentrations were measured before and 30, 60 and 120 minutes after beverage intake. Endothelial function was assessed before and 60 minutes after beverage consumption by normalized flow-mediated dilation (FMD). RW and DARW induced similar vasodilatation in the isolated vessels whereas PSRW, ET, and W did not. All ethanol-containing beverages induced similar basal vasodilatation of brachial artery. Only intake of RW resulted in enhancement of endothelial response, despite similar plasma catechin concentration after DARW. The borderline effect of RW on FMD (P=0.0531) became significant after FMD normalization (P=0.0043) that neutralized blunting effect of ethanol-induced basal vasodilatation. Effects of PSRW and ET did not differ although plasma urate increased after PSRW and not after ET, indicating lack of urate influence on endothelial response. Acute vascular effects of RW, mediated by polyphenols, cannot be predicted by plasma catechin concentration only.
Aviation, Space, and Environmental Medicine | 2007
Ante Obad; Zoran Valic; Ivan Palada; Alf O. Brubakk; Darko Modun; Zeljko Dujic
INTRODUCTION We have recently shown that a single air dive leads to acute arterial vasodilation and impairment of endothelium-dependent vasodilatation in humans. Additionally we have found that predive antioxidants at the upper recommended daily allowance partially prevented some of the negative effects of the dive. In this study we prospectively evaluated the effect of long-term antioxidants at a lower RDA dose on arterial endothelial function. METHODS Eight professional male divers performed an open sea air dive to 30 msw. Brachial artery flow-mediated dilation (FMD) was assessed before and after diving. RESULTS The first dive, without antioxidants, caused significant brachial arterial diameter increase from 3.85 +/- 0.55 to 4.04 +/- 0.5 mm and a significant reduction of FMD from 7.6 +/- 2.7 to 2.8 +/- 2.1%. The second dive, with antioxidants, showed unchanged arterial diameter and significant reduction of FMD from 8.11 +/- 2.4 to 6.8 +/- 1.4%. The FMD reduction was significantly less with antioxidants. Vascular smooth muscle function, assessed by nitroglycerine (endothelium-independent dilation), was unaffected by diving. DISCUSSION This study shows that long-term antioxidant treatment at a lower RDA dose ending 3-4 h before a dive reduces the endothelial dysfunction in divers. Since the scuba dive was of a similar depth and duration to those practiced by numerous recreational divers, this study raises the possibility of routine predive supplementation with antioxidants.
Medicine and Science in Sports and Exercise | 2011
Marko Ljubkovic; Zeljko Dujic; Andreas Møllerløkken; Darija Bakovic; Ante Obad; Toni Breskovic; Alf O. Brubakk
PURPOSE During SCUBA diving, breathing at increased pressure leads to a greater tissue gas uptake. During ascent, tissues may become supersaturated, and the gas is released in the form of bubbles that typically occur on the venous side of circulation. These venous gas emboli (VGE) are usually eliminated as they pass through the lungs, although their occasional presence in systemic circulation (arterialization) has been reported and it was assumed to be the main cause of the decompression sickness. The aims of the present study were to assess the appearance of VGE after air dives where no stops in coming to the surface are required and to assess their potential occurrence and frequency in the systemic circulation. METHODS Twelve male divers performed six dives with 3 d of rest between them following standard no-decompression dive procedures: 18/60, 18/70, 24/30, 24/40, 33/15, and 33/20 (the first value indicates depth in meters of sea water and the second value indicates bottom time in minutes). VGE monitoring was performed ultrasonographically every 20 min for 120 min after surfacing. RESULTS Diving profiles used in this study produced unexpectedly high amounts of gas bubbles, with most dives resulting in grade 4 (55/69 dives) on the bubble scale of 0-5 (no to maximal bubbles). Arterializations of gas bubbles were found in 5 (41.7%) of 12 divers and after 11 (16%) of 69 dives. These VGE crossovers were only observed when a large amount of bubbles was concomitantly present in the right valve of the heart. CONCLUSIONS Our findings indicate high amounts of gas bubbles produced after no-decompression air dives based on standardized diving protocols. High bubble loads were frequently associated with the crossover of VGE to the systemic circulation. Despite these findings, no acute decompression-related pathology was detected.
Clinical Physiology and Functional Imaging | 2010
Ante Obad; Jasna Marinovic; Marko Ljubkovic; Toni Breskovic; Darko Modun; Mladen Boban; Zeljko Dujic
The aim of this study was to assess the effects of successive deep dives on endothelial function of large conduit arteries and plasma pro‐oxidant and antioxidant activity. Seven experienced divers performed six dives in six consecutive days using a compressed mixture of oxygen, helium and nitrogen (trimix) with diving depths ranging from 55 to 80 m. Before and after first, third and sixth dive, venous gas emboli formation and brachial artery function (flow‐mediated dilation, FMD) was assessed by ultrasound. In addition, plasma antioxidant capacity (AOC) was measured by ferric reducing antioxidant power, and the level of oxidative stress was assessed by thiobarbituric acid‐reactive substances (TBARS) method. Although the FMD was reduced to a similar extent after each dive, the comparison of predive FMD showed a reduction from 8·6% recorded before the first dive to 6·3% before the third (P = 0·03) and 5·7% before the sixth dive (P = 0·003). A gradual shift in baseline was also detected with TBARS assay, with malondialdehyde values increasing from 0·10 ± 0·02 μmol l−1 before the first dive to 0·16 ± 0·03 before the sixth (P = 0·005). Predive plasma AOC values also showed a decreasing trend from 0·67 ± 0·20 mmol l−1 trolox equivalents (first day) to 0·56 ± 0·12 (sixth day), although statistical significance was not reached (P = 0·08). This is the first documentation of acute endothelial dysfunction in the large conduit arteries occurring after successive deep trimix dives. Both endothelial function and plasma pro‐oxidant and antioxidant activity did not return to baseline during the course of repetitive dives, indicating possible cumulative and longer lasting detrimental effects.
Respiratory Physiology & Neurobiology | 2008
Ivan Palada; Darija Bakovic; Zoran Valic; Ante Obad; Vladimir Ivancev; Davor Eterović; J. Kevin Shoemaker; Zeljko Dujic
Involuntary breathing movements (IBM) that occur in the struggle phase of maximal apneas produce waves of negative intrathoracic pressure. This could augment the venous return, increasing thereby the cardiac output and gas exchange, and release the fresh blood from venous pools of spleen and liver. To test these hypotheses we used photoplethysmography and ultrasound for assessment of hemodynamics and spleen size before, during and after maximal dry apneas at large lung volume in 7 trained divers. During the easy-going phase cardiac output was reduced about 40%, due to reduction in stroke volume and in presence of reduced inferior vena cava venous return, while the spleen contracted for about 60 ml. Towards the end of the struggle phase, in presence of intense IBM, the spleen volume further decreased for about 70 ml, while cardiac output and caval flow almost renormalized. In conclusion, IBM coincide with splenic volume reduction and restoration of hemodynamics, likely facilitating the use of the last oxygen reserves before apnea cessation.
Journal of Applied Physiology | 2010
Marko Ljubkovic; Jasna Marinovic; Ante Obad; Toni Breskovic; Svein Erik Gaustad; Zeljko Dujic
SCUBA diving is associated with generation of gas emboli due to gas release from the supersaturated tissues during decompression. Gas emboli arise mostly on the venous side of circulation, and they are usually eliminated as they pass through the lung vessels. Arterialization of venous gas emboli (VGE) is seldom reported, and it is potentially related to neurological damage and development of decompression sickness. The goal of the present study was to evaluate the generation of VGE in a group of divers using a mixture of compressed oxygen, helium, and nitrogen (trimix) and to probe for their potential appearance in arterial circulation. Seven experienced male divers performed three dives in consecutive days according to trimix diving and decompression protocols generated by V-planner, a software program based on the Varying Permeability Model. The occurrence of VGE was monitored ultrasonographically for up to 90 min after surfacing, and the images were graded on a scale from 0 to 5. The performed diving activities resulted in a substantial amount of VGE detected in the right cardiac chambers and their frequent passage to the arterial side, in 9 of 21 total dives (42%) and in 5 of 7 divers (71%). Concomitant measurement of mean pulmonary artery pressure revealed a nearly twofold augmentation, from 13.6 ± 2.8, 19.2 ± 9.2, and 14.7 ± 3.3 mmHg assessed before the first, second, and the third dive, respectively, to 26.1 ± 5.4, 27.5 ± 7.3, and 27.4 ± 5.9 mmHg detected after surfacing. No acute decompression-related disorders were identified. The observed high gas bubble loads and repeated microemboli in systemic circulation raise questions about the possibility of long-term adverse effects and warrant further investigation.