Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Antek G. Wong-Foy is active.

Publication


Featured researches published by Antek G. Wong-Foy.


Journal of the American Chemical Society | 2008

Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores

Stephen R. Caskey; Antek G. Wong-Foy; Adam J. Matzger

A series of four isostructural microporous coordination polymers (MCPs) differing in metal composition is demonstrated to exhibit exceptional uptake of CO2 at low pressures and ambient temperature. These conditions are particularly relevant for capture of flue gas from coal-fired power plants. A magnesium-based material is presented that is the highest surface area magnesium MCP yet reported and displays ultrahigh affinity based on heat of adsorption for CO2. This study demonstrates that physisorptive materials can achieve affinities and capacities competitive with amine sorbents while greatly reducing the energy cost associated with regeneration.


Journal of the American Chemical Society | 2009

A Porous Coordination Copolymer with over 5000 m2/g BET Surface Area

Kyoungmoo Koh; Antek G. Wong-Foy; Adam J. Matzger

New levels of surface area are achieved in a coordination polymer (UMCM-2, University of Michigan Crystalline Material) derived from zinc-mediated coordination copolymerization of a dicarboxylic and tricarboxylic acid. In addition to a large micropore contribution to the surface area, mesopores are also present. In contrast to the recently reported coordination copolymer UMCM-1, which has a mesoporous channel, UMCM-2 is built from three types of cages. In spite of exceptional porosity, both of these coordination polymers are thermally robust. Hydrogen uptake performance of UMCM-2 approaches 7 wt% at 77 K.


Langmuir | 2011

Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture.

Austin C. Kizzie; Antek G. Wong-Foy; Adam J. Matzger

The CO(2)-capture performance of microporous coordination polymers of the M/DOBDC series (where M = Zn, Ni, Co, and Mg; DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) was evaluated under flow-through conditions with dry surrogate flue gas (5/1 N(2)/CO(2)). The CO(2) capacities were found to track with static CO(2) sorption capacities at room temperature, with Mg/DOBDC demonstrating an exceptional capacity for CO(2) (23.6 wt %). The effect of humidity on the performance of Mg/DOBDC was investigated by collecting N(2)/CO(2)/H(2)O breakthrough curves at relative humidities (RHs) in the feed of 9, 36, and 70%. After exposure at 70% RH and subsequent thermal regeneration, only about 16% of the initial CO(2) capacity of Mg/DOBDC was recovered. However, in the case of Ni/DOBDC and Co/DOBDC, approximately 60 and 85%, respectively, of the initial capacities were recovered after the same treatment. These data indicate that although Mg/DOBDC has the highest capacity for CO(2), under the conditions used in this study, Co/DOBDC may be a more desirable material for deployment in CO(2) capture systems because of the added costs associated with flue gas dehumidification.


Journal of the American Chemical Society | 2008

Liquid Phase Adsorption by Microporous Coordination Polymers: Removal of Organosulfur Compounds

Katie A. Cychosz; Antek G. Wong-Foy; Adam J. Matzger

The utility of microporous coordination polymers (MCPs) for the adsorption of large organosulfur compounds (benzothiophene, dibenzothiophene, 4,6-dimethyldibenzothiophene) found in fuels is demonstrated. Large capacities are obtained at both low and high sulfur concentrations. For 4,6-dimethyldibenzothiophene, the compound most difficult to remove using current industrial techniques, a capacity of 41 g S/kg MCP at 1500 ppmw S is achieved by UMCM-150. It was determined that the size/shape of the pores in the MCP, rather than the surface area or pore volume, is the most important factor controlling adsorption capacity.


Journal of the American Chemical Society | 2009

Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers.

Katie A. Cychosz; Antek G. Wong-Foy; Adam J. Matzger

Microporous coordination polymers (MCPs) are demonstrated to be efficient adsorbents for the removal of the organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) from model diesel fuel and diesel fuel. For example, packed bed breakthrough experiments utilizing UMCM-150 find capacities of 25.1 g S/kg MCP for DBT and 24.3 g S/kg MCP for DMDBT from authentic diesel indicating that large amounts of fuel are desulfurized before the breakthrough point. Unlike activated carbons, where selectivity has been a problem, MCPs selectively adsorb the organosulfur compounds over other, similar components of diesel. Complete regeneration using toluene at modest temperatures is achieved. The attainment of high selectivities and capacities, particularly for the adsorption of the refractory compounds that are difficult to remove using current desulfurization techniques, in a reversible sorbent indicates that fuel desulfurization may be an important application for MCPs.


Journal of the American Chemical Society | 2013

Heterogenization of Homogeneous Catalysts in Metal–Organic Frameworks via Cation Exchange

Douglas T. Genna; Antek G. Wong-Foy; Adam J. Matzger; Melanie S. Sanford

This paper describes the heterogenization of single-site transition-metal catalysts in metal-organic frameworks (MOFs) via cation exchange. A variety of cationic complexes of Pd, Fe, Ir, Rh, and Ru have been incorporated into ZJU-28, and the new materials have been characterized by optical microscopy, inductively coupled plasma optical emission spectroscopy, and powder X-ray diffraction. MOF-supported [Rh(dppe)(COD)]BF4 catalyzes the hydrogenation of 1-octene to n-octane. The activity of this supported catalyst compares favorably to its homogeneous counterpart, and it can be recycled at least four times. Overall, this work provides a new and general approach for supporting transition-metal catalysts in MOFs.


Chemical Communications | 2009

MOF@MOF: microporous core–shell architectures

Kyoungmoo Koh; Antek G. Wong-Foy; Adam J. Matzger

Mixing two different linkers with the same topology has been applied to make metal-organic frameworks (MOFs) either in one batch or sequentially to generate coordination copolymers with either a randomly mixed or a core-shell composition of linkers.


Langmuir | 2009

Microporous coordination polymers as selective sorbents for liquid chromatography.

Rashid Ahmad; Antek G. Wong-Foy; Adam J. Matzger

We evaluate the potential of microporous coordination polymers (MCPs) to act as the stationary phase in liquid chromatographic separations. MCPs derived from carboxylates coordinated to copper (HKUST-1) and zinc (MOF-5) were studied. The shape and size selective separation of organic compounds including benzene, ethylbenzene, styrene, naphthalene, anthracene, phenanthrene, pyrene, 1,3,5-triphenylbenzene, and 1,3,5-tris(4-bromophenyl)benzene was performed, and in most cases excellent separation was achieved based on a combination of molecular sieving and adsorption effects.


Journal of the American Chemical Society | 2011

Highly Dispersed Palladium(II) in a Defective Metal–Organic Framework: Application to C–H Activation and Functionalization

Tae Hong Park; Amanda J. Hickman; Kyoungmoo Koh; Stephen P. Martin; Antek G. Wong-Foy; Melanie S. Sanford; Adam J. Matzger

High reversibility during crystallization leads to relatively defect-free crystals through repair of nonperiodic inclusions, including those derived from impurities. Microporous coordination polymers (MCPs) can achieve a high level of crystallinity through a related mechanism whereby coordination defects are repaired, leading to single crystals. In this work, we discovered and exploited the fact that this process is far from perfect for MCPs and that a minority ligand that is coordinatively identical to but distinct in shape from the majority linker can be inserted into the framework, resulting in defects. The reaction of Zn(II) with 1,4-benzenedicarboxylic acid (H(2)BDC) in the presence of small amounts of 1,3,5-tris(4-carboxyphenyl)benzene (H(3)BTB) leads to a new crystalline material, MOF-5(O(h)), that is nearly identical to MOF-5 but has an octahedral morphology and a number of defect sites that are uniquely functionalized with dangling carboxylates. The reaction with Pd(OAc)(2) impregnates the metal ions, creating a heterogeneous catalyst with ultrahigh surface area. The Pd(II)-catalyzed phenylation of naphthalene within Pd-impregnated MOF-5(O(h)) demonstrates the potential utility of an MCP framework for modulating the reactivity and selectivity of such transformations. Furthermore, this novel synthetic approach can be applied to different MCPs and will provide scaffolds functionalized with catalytically active metal species.


Journal of the American Chemical Society | 2010

Linker-Directed Vertex Desymmetrization for the Production of Coordination Polymers with High Porosity

Jennifer K. Schnobrich; Olivier Lebel; Katie A. Cychosz; Anne Dailly; Antek G. Wong-Foy; Adam J. Matzger

Five non-interpenetrated microporous coordination polymers (MCPs) are derived by vertex desymmetrization using linkers with symmetry inequivalent coordinating groups, and these MCPs include properties such as rare metal clusters, new network topologies, and supramolecular isomerism. Gas sorption in polymorphic frameworks, UMCM-152 and UMCM-153 (based upon a copper-coordinated tetracarboxylated triphenylbenzene linker), reveals nearly identical properties with BET surface areas in the range of 3300-3500 m(2)/g and excess hydrogen uptake of 5.7 and 5.8 wt % at 77 K. In contrast, adsorption of organosulfur compounds dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) shows remarkably different capacities, providing direct evidence that liquid-phase adsorption is not solely dependent on surface area or linker/metal cluster identity. Structural features present in MCPs derived from these reduced symmetry linkers include the presence of more than one type of Cu-paddlewheel in a structure derived from a terphenyl tricarboxylate (UMCM-151) and a three-bladed zinc paddlewheel metal cluster in an MCP derived from a pentacarboxylated triphenylbenzene linker (UMCM-154).

Collaboration


Dive into the Antek G. Wong-Foy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Liu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge