Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony A. Millar is active.

Publication


Featured researches published by Anthony A. Millar.


The Plant Cell | 2005

The Arabidopsis GAMYB-Like Genes, MYB33 and MYB65, Are MicroRNA-Regulated Genes That Redundantly Facilitate Anther Development

Anthony A. Millar; Frank Gubler

The functions of the vast majority of genes encoding R2R3 MYB domain proteins remain unknown. The closely related MYB33 and MYB65 genes of Arabidopsis thaliana have high sequence similarity to the barley (Hordeum vulgare) GAMYB gene. T-DNA insertional mutants were isolated for both genes, and a myb33 myb65 double mutant was defective in anther development. In myb33 myb65 anthers, the tapetum undergoes hypertrophy at the pollen mother cell stage, resulting in premeiotic abortion of pollen development. However, myb33 myb65 sterility was conditional, where fertility increased both under higher light or lower temperature conditions. Thus, MYB33/MYB65 facilitate, but are not essential for, anther development. Neither single mutant displayed a phenotype, implying that MYB33 and MYB65 are functionally redundant. Consistent with functional redundancy, promoter–β-glucuronidase (GUS) fusions of MYB33 and MYB65 gave identical expression patterns in flowers (sepals, style, receptacle, anther filaments, and connective but not in anthers themselves), shoot apices, and root tips. By contrast, expression of a MYB33:GUS translational fusion in flowers was solely in young anthers (consistent with the male sterile phenotype), and no staining was seen in shoot meristems or root tips. A microRNA target sequence is present in the MYB genes, and mutating this sequence in the MYB33:GUS fusion results in an expanded expression pattern, in tissues similar to that observed in the promoter-GUS lines, implying that the microRNA target sequence is restricting MYB33 expression. Arabidopsis transformed with MYB33 containing the mutated microRNA target had dramatic pleiotrophic developmental defects, suggesting that restricting MYB33 expression, especially in the shoot apices, is essential for proper plant development.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family

Robert S. Allen; Junyan Li; Melissa I. Stahle; Aurélie Dubroué; Frank Gubler; Anthony A. Millar

Currently, there are very few loss-of-function mutations in micro-RNA genes. Here, we characterize two members of the Arabidopsis MIR159 family, miR159a and miR159b, that are predicted to regulate the expression of a family of seven transcription factors that includes the two redundant GAMYB-like genes, MYB33 and MYB65. Using transfer DNA (T-DNA) insertional mutants, we show that a mir159ab double mutant has pleiotropic morphological defects, including altered growth habit, curled leaves, small siliques, and small seeds. Neither mir159a nor mir159b single mutants displayed any of these traits, indicating functional redundancy. By using reporter-gene constructs, it appears that MIR159a and MIR159b are transcribed almost exclusively in the cells in which MYB33 is repressed, as had been previously determined by comparison of MYB33 and mMYB33 (an miR159-resistant allele of MYB33) expression patterns. Consistent with these overlapping transcriptional domains, MYB33 and MYB65 expression levels were elevated throughout mir159ab plants. By contrast, the other five GAMYB-like family members are transcribed predominantly in tissues where miR159a and miR159b are absent, and consequently their expression levels are not markedly elevated in mir159ab. Additionally, mMYB33 transgenic plants can phenocopy the mir159ab phenotype, suggesting that its phenotype is explained by deregulated expression of the redundant gene pair MYB33 and MYB65. This prediction was confirmed; the pleiotropic developmental defects of mir159ab are suppressed through the combined mutations of MYB33 and MYB65, demonstrating the narrow and specific target range of miR159a and miR159b.


Functional & Integrative Genomics | 2005

Plant and animal microRNAs: similarities and differences

Anthony A. Millar; Peter M. Waterhouse

Plant and animal microRNAs (miRNAs) are evolutionarily ancient small RNAs, ∼19–24 nucleotides in length, that are generated by cleavage from larger highly structured precursor molecules. In both plants and animals, miRNAs posttranscriptionally regulate gene expression through interactions with their target mRNAs, and these targets are often genes involved with regulating key developmental events. Despite these similarities, plant and animal miRNAs exert their control in fundamentally different ways. Generally, animal miRNAs repress gene expression by mediating translational attenuation through (multiple) miRNA-binding sites located within the 3′ untranslated region of the target gene. In contrast, almost all plant miRNAs regulate their targets by directing mRNA cleavage at single sites in the coding regions. These and other differences suggest that the two systems may have originated independently, possibly as a prerequisite to the development of complex body plans.


Plant Physiology | 2002

Significance of the Expression of the CER6 Condensing Enzyme for Cuticular Wax Production in Arabidopsis

Tanya S. Hooker; Anthony A. Millar; Ljerka Kunst

To learn more about the role of the CER6 condensing enzyme in Arabidopsis surface wax production, we determinedCER6 transcription domains and the timing ofCER6 transcription in vegetative and reproductive structures from juvenile, mature, and senescing tissues. We found thatCER6 is highly transcribed throughout development, exclusively in the epidermal cells in all tissues examined. The only exception to the epidermal expression was observed in anthers nearing maturity, in which CER6 mRNA was localized in the tapetum. To determine if environmental factors such as light and water deficit, which are known to stimulate wax accumulation, induceCER6 transcription, we examined the effects of these factors on CER6 transcript abundance. Our results demonstrate that light is essential for CER6transcription, and that osmotic stress and the presence of abscisic acid enhance CER6 transcript accumulation.CER6 promoter-directed expression of the β-glucuronidase reporter gene in transgenic plants demonstrated that the CER6 promoter was highly effective in directing epidermis-specific expression in Arabidopsis and tobacco (Nicotiana tabacum). Furthermore, CER6promoter-driven CER6 overexpression resulted in increased wax deposition in Arabidopsis stems. These experiments indicate that the expression level of CER6 in the epidermis is one of the factors controlling wax accumulation on Arabidopsis stems.


Trends in Plant Science | 2000

All fatty acids are not equal: discrimination in plant membrane lipids.

Anthony A. Millar; Mark Andrew Smith; Ljerka Kunst

Plant membrane lipids are primarily composed of 16-carbon and 18-carbon fatty acids containing up to three double bonds. By contrast, the seed oils of many plant species contain fatty acids with significantly different structures. These unusual fatty acids sometimes accumulate to >90% of the total fatty acid content in the seed triacylglycerols, but are generally excluded from the membrane lipids of the plant, including those of the seed. The reasons for their exclusion and the mechanisms by which this is achieved are not completely understood. Here we discuss recent research that has given new insights into how plants prevent the accumulation of unusual fatty acids in membrane lipids, and how strict this censorship of membrane composition is. We also describe a transgenic experiment that resulted in an excessive buildup of unusual fatty acids in cellular membranes, and clearly illustrated that the control of membrane lipid composition is essential for normal plant growth and development.


Plant Physiology | 2010

The MicroRNA159-Regulated GAMYB-like Genes Inhibit Growth and Promote Programmed Cell Death in Arabidopsis

María Magdalena Alonso-Peral; Junyan Li; Yanjiao Li; Robert S. Allen; Wendelin Schnippenkoetter; Stephen Ohms; Rosemary G. White; Anthony A. Millar

The microRNA159 (miR159) family represses the conserved GAMYB-like genes that encode R2R3 MYB domain transcription factors that have been implicated in gibberellin (GA) signaling in anthers and germinating seeds. In Arabidopsis (Arabidopsis thaliana), the two major miR159 family members, miR159a and miR159b, are functionally specific for two GAMYB-like genes, MYB33 and MYB65. These transcription factors have been shown to be involved in anther development, but there are differing reports about their role in the promotion of flowering and little is known about their function in seed germination. To understand the function of this pathway, we identified the genes and processes controlled by these GAMYB-like genes. First, we demonstrate that miR159 completely represses MYB33 and MYB65 in vegetative tissues. We show that GA does not release this repression and that these transcription factors are not required for flowering or growth. By contrast, in the absence of miR159, the deregulation of MYB33 and MYB65 in vegetative tissues up-regulates genes that are highly expressed in the aleurone and GA induced during seed germination. Confirming that these genes are GAMYB-like regulated, their expression was reduced in myb33.myb65.myb101 seeds. Aleurone vacuolation, a GA-mediated programmed cell death process required for germination, was impaired in these seeds. Finally, the deregulation of MYB33 and MYB65 in vegetative tissues inhibits growth by reducing cell proliferation. Therefore, we conclude that miR159 acts as a molecular switch, only permitting the expression of GAMYB-like genes in anthers and seeds. In seeds, these transcription factors participate in GA-induced pathways required for aleurone development and death.


Journal of Plant Growth Regulation | 2003

The role of GAMYB transcription factors in GA-regulated gene expression

Fiona J. Woodger; Anthony A. Millar; Fiona Ruth Murray; John V. Jacobsen; Frank Gubler

A gibberellin- and abscisic acid-regulated MYB, GAMYB, was first identified as an activator of GA-regulated genes in cereal aleurone. Here we review recent advances made in delineating the signaling events related to GAMYB expression and function in aleurone. In addition, there is a growing body of evidence that GAMYB plays an important role in other aspects of plant growth and development, including anther development, stem elongation, floral initiation and seed development.


Plant Journal | 2010

Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds

Jose M. Barrero; Anthony A. Millar; Jayne Griffiths; Tomasz Czechowski; Wolf Rüdiger Scheible; Michael K. Udvardi; John B. Reid; John Ross; John V. Jacobsen; Frank Gubler

Seed dormancy is a very important trait that maximizes the survival of seed in nature, the control of which can have important repercussions on the yield of many crop species. We have used gene expression profiling to identify genes that are involved in dormancy regulation in Arabidopsis thaliana. RNA was isolated from imbibed dormant (D) and after-ripened (AR) ecotype C24 seeds, and then screened by quantitative RT-PCR (qRT-PCR) for differentially expressed transcription factors (TFs) and other regulatory genes. Out of 2207 genes screened, we have identified 39 that were differentially expressed during the first few hours of imbibition. After analyzing T-DNA insertion mutants for 22 of these genes, two displayed altered dormancy compared with the wild type. These mutants are affected in genes that encode a RING finger and an HDZip protein. The first, named DESPIERTO, is involved in ABA sensitivity during seed development, regulates the expression of ABI3, and produces a complete loss of dormancy when mutated. The second, the HDZip (ATHB20), is expressed during seed germination in the micropylar endosperm and in the root cap, and increases ABA sensitivity and seed dormancy when mutated.


Plant Biotechnology Journal | 2012

Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat

Muhammad Fahim; Anthony A. Millar; Craig C. Wood; Philip J. Larkin

Wheat streak mosaic virus (WSMV) is a persistent threat to wheat production, necessitating novel approaches for protection. We developed an artificial miRNA strategy against WSMV, incorporating five amiRNAs within one polycistronic amiRNA precursor. Using miRNA sequence and folding rules, we chose five amiRNAs targeting conserved regions of WSMV but avoiding off-targets in wheat. These replaced the natural miRNA in each of five arms of the polycistronic rice miR395, producing amiRNA precursor, FanGuard (FGmiR395), which was transformed into wheat behind a constitutive promoter. Splinted ligation detected all five amiRNAs being processed in transgenic leaves. Resistance was assessed over two generations. Three types of response were observed in T(1) plants of different transgenic families: completely immune; initially resistant with resistance breaking down over time; and initially susceptible followed by plant recovery. Deep sequencing of small RNAs from inoculated leaves allowed the virus sequence to be assembled from an immune transgenic, susceptible transgenic, and susceptible non-transgenic plant; the amiRNA targets were fully conserved in all three isolates, indicating virus replication on some transgenics was not a result of mutational escape by the virus. For resistant families, the resistance segregated with the transgene. Analysis in the T(2) generation confirmed the inheritance of immunity and gave further insights into the other phenotypes. Stable resistant lines developed no symptoms and no virus by ELISA; this resistance was classified as immunity when extracts failed to transmit from inoculated leaves to test plants. This study demonstrates the utility of a polycistronic amiRNA strategy in wheat against WSMV.


PLOS ONE | 2011

Transcriptome Analysis of the Vernalization Response in Barley (Hordeum vulgare) Seedlings

Aaron G. Greenup; Sharyar Sasani; Sandra N. Oliver; Sally A. Walford; Anthony A. Millar; Ben Trevaskis

Temperate cereals, such as wheat (Triticum spp.) and barley (Hordeum vulgare), respond to prolonged cold by becoming more tolerant of freezing (cold acclimation) and by becoming competent to flower (vernalization). These responses occur concomitantly during winter, but vernalization continues to influence development during spring. Previous studies identified VERNALIZATION1 (VRN1) as a master regulator of the vernalization response in cereals. The extent to which other genes contribute to this process is unclear. In this study the Barley1 Affymetrix chip was used to assay gene expression in barley seedlings during short or prolonged cold treatment. Gene expression was also assayed in the leaves of plants after prolonged cold treatment, in order to identify genes that show lasting responses to prolonged cold, which might contribute to vernalization-induced flowering. Many genes showed altered expression in response to short or prolonged cold treatment, but these responses differed markedly. A limited number of genes showed lasting responses to prolonged cold treatment. These include genes known to be regulated by vernalization, such as VRN1 and ODDSOC2, and also contigs encoding a calcium binding protein, 23-KD jasmonate induced proteins, an RNase S-like protein, a PR17d secretory protein and a serine acetyltransferase. Some contigs that were up-regulated by short term cold also showed lasting changes in expression after prolonged cold treatment. These include COLD REGULATED 14B (COR14B) and the barley homologue of WHEAT COLD SPECIFIC 19 (WSC19), which were expressed at elevated levels after prolonged cold. Conversely, two C-REPEAT BINDING FACTOR (CBF) genes showed reduced expression after prolonged cold. Overall, these data show that a limited number of barley genes exhibit lasting changes in expression after prolonged cold treatment, highlighting the central role of VRN1 in the vernalization response in cereals.

Collaboration


Dive into the Anthony A. Millar's collaboration.

Top Co-Authors

Avatar

Junyan Li

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Frank Gubler

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Marlene Reichel

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Robert S. Allen

Australian National University

View shared research outputs
Top Co-Authors

Avatar

John V. Jacobsen

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth S. Dennis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Muhammad Fahim

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter M. Waterhouse

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Philip J. Larkin

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge