Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Adame is active.

Publication


Featured researches published by Anthony Adame.


Neuron | 2005

Effects of α-Synuclein Immunization in a Mouse Model of Parkinson’s Disease

Eliezer Masliah; Edward Rockenstein; Anthony Adame; Michael Alford; Leslie Crews; Makoto Hashimoto; Peter Seubert; Michael K. Lee; Jason Goldstein; Tamie J. Chilcote; Dora Games; Dale Schenk

Abnormal folding of alpha-synuclein (alpha-syn) is thought to lead to neurodegeneration and the characteristic symptoms of Lewy body disease (LBD). Since previous studies suggest that immunization might be a potential therapy for Alzheimers disease, we hypothesized that immunization with human (h)alpha-syn might have therapeutic effects in LBD. For this purpose, halpha-syn transgenic (tg) mice were vaccinated with halpha-syn. In mice that produced high relative affinity antibodies, there was decreased accumulation of aggregated halpha-syn in neuronal cell bodies and synapses that was associated with reduced neurodegeneration. Furthermore, antibodies produced by immunized mice recognized abnormal halpha-syn associated with the neuronal membrane and promoted the degradation of halpha-syn aggregates, probably via lysosomal pathways. Similar effects were observed with an exogenously applied FITC-tagged halpha-syn antibody. These results suggest that vaccination is effective in reducing neuronal accumulation of halpha-syn aggregates and that further development of this approach might have a potential role in the treatment of LBD.


The Journal of Neuroscience | 2009

Beclin 1 Gene Transfer Activates Autophagy and Ameliorates the Neurodegenerative Pathology in α-Synuclein Models of Parkinson's and Lewy Body Diseases

Brian Spencer; Rewati Potkar; Margarita Trejo; Edward Rockenstein; Christina Patrick; Ryan Gindi; Anthony Adame; Tony Wyss-Coray; Eliezer Masliah

Accumulation of the synaptic protein α-synuclein (α-syn) is a hallmark of Parkinsons disease (PD) and Lewy body disease (LBD), a heterogeneous group of disorders with dementia and parkinsonism, where Alzheimers disease and PD interact. Accumulation of α-syn in these patients might be associated with alterations in the autophagy pathway. Therefore, we postulate that delivery of beclin 1, a regulator of the autophagy pathway, might constitute a strategy toward developing a therapy for LBD/PD. Overexpression of α-syn from lentivirus transduction in a neuronal cell line resulted in lysosomal accumulation and alterations in autophagy. Coexpression of beclin 1 activated autophagy, reduced accumulation of α-syn, and ameliorated associated neuritic alterations. The effects of beclin 1 overexpression on LC3 and α-syn accumulation were partially blocked by 3-MA and completely blocked by bafilomycin A1. In contrast, rapamycin enhanced the effects of beclin 1. To evaluate the potential effects of activating autophagy in vivo, a lentivirus expressing beclin 1 was delivered to the brain of a α-syn transgenic mouse. Neuropathological analysis demonstrated that beclin 1 injections ameliorated the synaptic and dendritic pathology in the tg mice and reduced the accumulation of α-syn in the limbic system without any significant deleterious effects. This was accompanied by enhanced lysosomal activation and reduced alterations in the autophagy pathway. Thus, beclin 1 plays an important role in the intracellular degradation of α-syn either directly or indirectly through the autophagy pathway and may present a novel therapeutic target for LBD/PD.


Neurology | 2005

Aβ vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease

Eliezer Masliah; L. Hansen; Anthony Adame; Leslie Crews; F. Bard; C. Lee; Peter Seubert; D. Games; L. Kirby; Dale Schenk

The authors report a patient with Alzheimer disease (AD) without encephalitis who was immunized with AN-1792 (an adjuvanted formulation of Aβ-42). There were no amyloid plaques in the frontal cortex and abundant Aβ-immunoreactive macrophages, but tangles and amyloid angiopathy were present. The white matter appeared normal and minimal lymphocytic infiltration in the leptomeninges was observed. This case illustrates the effects of an Aβ-based immunization on AD pathogenesis in the absence of overt meningoencephalitis and leukoencephalopathy.


Cell | 2009

Reduced IGF-1 signaling delays age-associated proteotoxicity in mice.

Ehud Cohen; Johan Paulsson; Pablo Blinder; Tal Burstyn-Cohen; Deguo Du; Gabriela Estepa; Anthony Adame; Hang M. Pham; Martin Holzenberger; Jeffery W. Kelly; Eliezer Masliah; Andrew Dillin

The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimers disease-linked human peptide, Abeta. We reduced IGF signaling in Alzheimers model mice and discovered that these animals are protected from Alzheimers-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Abeta leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Abeta oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Abeta toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimers disease therapy.The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimers disease-linked human peptide, Aβ. We reduced IGF signaling in Alzheimers model mice and discovered that these animals are protected from Alzheimers-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Aβ leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Aβ oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Aβ toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimers disease therapy.


Cell | 2011

Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration.

Daniel Zwilling; Shao-Yi Huang; Korrapati V. Sathyasaikumar; Francesca M. Notarangelo; Paolo Guidetti; Hui-Qiu Wu; Jason Lee; Jennifer Truong; Yaisa Andrews-Zwilling; Eric W. Hsieh; Jamie Y. Louie; Tiffany Wu; Kimberly Scearce-Levie; Christina Patrick; Anthony Adame; Flaviano Giorgini; Saliha Moussaoui; Grit Laue; Arash Rassoulpour; Gunnar Flik; Yadong Huang; Joseph M. Muchowski; Eliezer Masliah; Robert Schwarcz; Paul J. Muchowski

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimers and Huntingtons diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimers disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntingtons disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


PLOS ONE | 2011

Passive Immunization Reduces Behavioral and Neuropathological Deficits in an Alpha-Synuclein Transgenic Model of Lewy Body Disease

Eliezer Masliah; Edward Rockenstein; Michael Mante; Leslie Crews; Brian Spencer; Anthony Adame; Christina Patrick; Margarita Trejo; Kiren Ubhi; Troy T. Rohn; Sarah Mueller-Steiner; Peter Seubert; Robin Barbour; Lisa McConlogue; Manuel Buttini; Dora Games; Dale Schenk

Dementia with Lewy bodies (DLB) and Parkinsons Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.


The Journal of Neuroscience | 2007

Neuroprotective Effects of Regulators of the Glycogen Synthase Kinase-3β Signaling Pathway in a Transgenic Model of Alzheimer's Disease Are Associated with Reduced Amyloid Precursor Protein Phosphorylation

Edward Rockenstein; Magdalena Torrance; Anthony Adame; Michael Mante; Pazit Bar-On; John B. Rose; Leslie Crews; Eliezer Masliah

The glycogen synthase kinase-3β (GSK3β) pathway plays an important role in mediating neuronal fate and synaptic plasticity. In Alzheimers disease (AD), abnormal activation of this pathway might play an important role in neurodegeneration, and compounds such as lithium that modulate GSK3β activity have been shown to reduce amyloid production and tau phosphorylation in amyloid precursor protein (APP) transgenic (tg) mice. However, it is unclear whether regulation of GSK3β is neuroprotective in APP tg mice. In this context, the main objective of the present study was to determine whether pharmacological or genetic manipulations that block the GSK3β pathway might ameliorate the neurodegenerative alterations in APP tg mice and to better understand the mechanisms involved. For this purpose, two sets of experiments were performed. First, tg mice expressing mutant human APP under the Thy1 promoter (hAPP tg) were treated with either lithium chloride or saline alone. Second, hAPP tg mice were crossed with GSK3β tg mice, in which overexpression of this signaling molecule results in a dominant-negative (DN) effect with inhibition of activity. hAPP tg mice that were treated with lithium or that were crossed with DN–GSK3β tg mice displayed improved performance in the water maze, preservation of the dendritic structure in the frontal cortex and hippocampus, and decreased tau phosphorylation. Moreover, reduced activation of GSK3β was associated with decreased levels of APP phosphorylation that resulted in decreased amyloid-β production. In conclusion, the present study showed that modulation of the GSK3β signaling pathway might also have neuroprotective effects in tg mice by regulating APP maturation and processing and further supports the notion that GSK3β might be a suitable target for the treatment of AD.


PLOS ONE | 2010

Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in Models of α-Synucleinopathy

Leslie Crews; Brian Spencer; Paula Desplats; Christina Patrick; Amy Paulino; Edward Rockenstein; Lawrence A. Hansen; Anthony Adame; Douglas Galasko; Eliezer Masliah

Background Lewy body disease is a heterogeneous group of neurodegenerative disorders characterized by α-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinsons Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in α-synuclein clearance might play an important role. For this reason, we sought to examine the expression levels of members of the autophagy pathway in brains of patients with DLB and Alzheimers Disease (AD) and in α-synuclein transgenic mice. Methodology/Principal Findings By immunoblot analysis, compared to controls and AD, in DLB cases levels of mTor were elevated and Atg7 were reduced. Levels of other components of the autophagy pathway such as Atg5, Atg10, Atg12 and Beclin-1 were not different in DLB compared to controls. In DLB brains, mTor was more abundant in neurons displaying α-synuclein accumulation. These neurons also showed abnormal expression of lysosomal markers such as LC3, and ultrastructural analysis revealed the presence of abundant and abnormal autophagosomes. Similar alterations were observed in the brains of α-synuclein transgenic mice. Intra-cerebral infusion of rapamycin, an inhibitor of mTor, or injection of a lentiviral vector expressing Atg7 resulted in reduced accumulation of α-synuclein in transgenic mice and amelioration of associated neurodegenerative alterations. Conclusions/Significance This study supports the notion that defects in the autophagy pathway and more specifically in mTor and Atg7 are associated with neurodegeneration in DLB cases and α-synuclein transgenic models and supports the possibility that modulators of the autophagy pathway might have potential therapeutic effects.


The Journal of Neuroscience | 2005

Neurological and Neurodegenerative Alterations in a Transgenic Mouse Model Expressing Human α-Synuclein under Oligodendrocyte Promoter: Implications for Multiple System Atrophy

Clifford W. Shults; Edward Rockenstein; Leslie Crews; Anthony Adame; Michael Mante; Gabriel Larrea; Makoto Hashimoto; David D. Song; Takeshi Iwatsubo; Kyoko Tsuboi; Eliezer Masliah

Multiple system atrophy (MSA) is a progressive, neurodegenerative disease characterized by parkinsonism, ataxia, autonomic dysfunction, and accumulation of α-synuclein (α-syn) in oligodendrocytes. To better understand the mechanisms of neurodegeneration and the role of α-syn accumulation in oligodendrocytes in the pathogenesis of MSA, we generated transgenic mouse lines expressing human (h) α-syn under the control of the murine myelin basic protein promoter. Transgenic mice expressing high levels of hα-syn displayed severe neurological alterations and died prematurely at 6 months of age. Furthermore, mice developed progressive accumulation of hα-syn-immunoreactive inclusions in oligodendrocytes along the axonal tracts in the brainstem, basal ganglia, cerebellum, corpus callosum, and neocortex. The inclusions also reacted with antibodies against phospho-serine (129) hα-syn and ubiquitin, and hα-syn was found in the detergent-insoluble fraction. In high-expresser lines, the white matter tracts displayed intense astrogliosis, myelin pallor, and decreased neurofilament immunostaining. Accumulation of hα-syn in oligodendrocytes also leads to prominent neurodegenerative changes in the neocortex with decreased dendritic density and to loss of dopaminergic fibers in the basal ganglia. The oligodendrocytic inclusions were composed of fibrils and accompanied by mitochondrial alterations and disruption of the myelin lamina in the axons. Together, these studies support the contention that accumulation of α-syn in oligodendrocytes promotes neurodegeneration and recapitulates several of the key functional and neuropathological features of MSA.


Journal of Biological Chemistry | 2011

α-Synuclein Sequesters Dnmt1 from the Nucleus A NOVEL MECHANISM FOR EPIGENETIC ALTERATIONS IN LEWY BODY DISEASES

Paula Desplats; Brian Spencer; Elizabeth Coffee; Pruthul Patel; Sarah Michael; Christina Patrick; Anthony Adame; Edward Rockenstein; Eliezer Masliah

DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.

Collaboration


Dive into the Anthony Adame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Mante

University of California

View shared research outputs
Top Co-Authors

Avatar

Brian Spencer

University of California

View shared research outputs
Top Co-Authors

Avatar

Leslie Crews

University of California

View shared research outputs
Top Co-Authors

Avatar

Kiren Ubhi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Desplats

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge