Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony B. Renwick is active.

Publication


Featured researches published by Anthony B. Renwick.


Xenobiotica | 1996

Induction of cytochrome P450 isoenzymes in cultured precision-cut rat and human liver slices

Brian G. Lake; C. Charzat; J. M. Tredger; Anthony B. Renwick; J. A. Beamand; R.J. Price

1. The effect of some xenobiotics on levels of selected cytochrome P450 (CYP) isoenzymes determined by Western immunoblotting and associated enzyme activities has been studied in 72-h cultured rat and human precision-cut liver slices. 2. In cultured rat liver slices, 0.5 mM sodium phenobarbitone (PB), 25 microM beta-naphthoflavone (BNF), and 20 micrograms/ml Aroclor 1254 (ARO) induced mixed-function oxidase enzyme activities. Western immunoblotting of liver slice microsomes was performed with antibodies to rat CYP1A2, 2B1/2 and 3A. Compared with 72-h control (dimethyl sulphoxide only treated) rat liver slice microsomes, PB induced CYP2B1/2 and 3A, BNF induced CYP1A2, and ARO induced CYP1A2, 2B1/2, and 3A. 3. The peroxisome proliferators methylclofenapate (MCP), ciprofibrate (CIP) and Wy-14,643 (WY) induced palmitoyl-CoA oxidation in 72-h cultured rat liver slices. Compared with 72-h control rat liver slice microsomes, MCP, CIP, and WY all induced levels of CYP4A. 4. In cultured human liver slices, 20 micrograms/ml ARO, but not 0.5 mM MCP, induced 7-ethoxyresorufin O-deethylase activity. Neither ARO nor MCP had any effect on homogenate palmitoyl-CoA oxidation and microsomal lauric acid 11- and 12-hydroxylase activities. Compared with 72-h control human liver slice microsomes, ARO induced CYP1A2, and MCP appeared to induce CYP4A. Further studies would be required to confirm that CYP4A isoenzymes could be induced by xenobiotics in human liver slices. 5. These results demonstrate that cultured liver slices may be used in evaluating the effect of xenobiotics on both rat and human CYP isoenzymes.


Xenobiotica | 2003

Studies on the induction of rat hepatic CYP1A, CYP2B, CYP3A and CYP4A subfamily form mRNAs in vivo and in vitro using precision-cut rat liver slices

Clive Meredith; Mary P. Scott; Anthony B. Renwick; R.J. Price; Brian G. Lake

1. Real-time quantitative reverse transcription-polymerase chain reaction methodology (TaqMan®) was used to examine the induction of some selected rat hepatic cyto-chrome P450 (CYP) forms in vivo and in vitro using cultured precision-cut liver slices. 2. TaqMan primers and probe sets were developed for rat CYP1A1, CYP1A2, CYP2B1, CYP2B1/2, CYP3A1, CYP3A2 and CYP4A1 mRNAs. 3. To characterize the responsiveness of the rat CYP mRNA TaqMan primers and probe sets, rats were treated in vivo with a single intraperitoneal dose of 500 mg kg − 1 Aroclor 1254 (ARO) and with four daily oral doses of either 50 mg kg − 1 day − 1 dexamethasone (DEX) or 75 mg kg − 1 day − 1 methylclofenapate (MCP). Treatment with ARO produced 22 600-, 5480-, 648-, 52-, 47- and 9-fold increases in levels of CYP1A1, CYP2B1, CYP2B1/2, CYP1A2, CYP3A1 and CYP3A2 mRNA, respectively. DEX treatment produced 97-, 24-, 8- and 4-fold increases, respectively, in CYP3A1, CYP2B1, CYP2B1/2 and CYP3A2 mRNA levels, and MCP produced 339-, 126- and 25-fold increases, respectively, in CYP4A1, CYP2B1 and CYP2B1/2 mRNA levels. All three CYP inducers also increased microsomal CYP content and produced corresponding increases in CYP1A, CYP2B, CYP3A and CYP4A form marker enzyme activities. 4. Rat liver slices were cultured for 6 and 24 h in medium containing 0.1 µ M insulin and 0.1 µ M DEX, and also for 24 h in medium containing only 0.1 µ M insulin (DEX-free medium). Liver slices were cultured in control medium or in medium containing either 10 µ M β -naphthoflavone (BNF), 10 µ g ml − 1 ARO, 500 µ M sodium phenobarbitone (NaPB), 20 µ M pregnenolone-16 α -carbonitrile (PCN), 50 µ M Wy-14,643 (WY) or 50 µ M MCP. 5. With the exception of the effect of BNF on CYP1A1 mRNA levels, the induction of all the CYP mRNAs studied was greater after 24- than after 6-h treatment. Generally, the magnitude of induction of CYP mRNA levels was greater after 24 h in liver slices cultured in DEX-free than in DEX-supplemented medium. 6. Treatment of liver slices with BNF and ARO for 24 h in DEX-free medium produced 21- and 35-fold increases, respectively, and 38- and 37-fold increases, respectively, in CYP1A1 and CYP1A2 mRNA levels. NaPB, PCN, WY and MCP did not increase either CYP1A1 or CYP1A2 mRNA levels. 7. After 24 h, levels of CYP2B1/2 mRNA were increased 18-, 20-, 9-, 16- and 13-fold by treatment with ARO, NaPB, PCN, WY and MCP, respectively. PCN also produced 56- and 4-fold increases, respectively, in CYP3A1 and CYP3A2 mRNA levels. 8. Treatment with WY and MCP for 24 h produced 437- and 186-fold increases, respectively, in levels of CYP4A1 mRNA. None of the other CYP inducers studied had any effect on CYP4A1 mRNA levels. 9. The results demonstrate the utility of cultured precision-cut liver slices as an in vitro model system to evaluate the effects of xenobiotics on rat CYP1A, CYP2B, CYP3A and CYP4A form mRNA levels.


Xenobiotica | 2001

Carbamazepine: a 'blind' assessment of CYP- associated metabolism and interactions in human liver-derived in vitro systems

Olavi Pelkonen; P. Myllynen; Päivi Taavitsainen; Alan R. Boobis; Patricia Watts; Brian G. Lake; R.J. Price; Anthony B. Renwick; M.J. Gómez-Lechón; José V. Castell; Magnus Ingelman-Sundberg; Mats Hidestrand; A. Guillouzo; L. Corcos; Peter S. Goldfarb; David F.V. Lewis

1. The ability of various in vitro systems for CYP enzymes (computer modelling, human liver microsomes, precision-cut liver slices, hepatocytes in culture, recombinant enzymes) to predict various aspects of in vivo metabolism and kinetics of carbamazepine (CBZ) was investigated. 2. The study was part of the EUROCYP project that aimed to evaluate relevant human in vitro systems to study drug metabolism. 3. CBZ was given to the participating laboratories without disclosing its chemical nature. 4. The most important enzyme (CYP3A4) and metabolic route (10,11-epoxidation) were predicted by all the systems studied. 5. Minor enzymes and routes were predicted to a different extent by various systems. 6. Prediction of a clearance class, i.e. slow clearance, was correctly predicted by microsomes, slices, hepatocytes and recombinant enzymes (CYP3A4). 7. The 10,11-epoxidation of CBZ by the recombinant CYP3A4 was enhanced by the addition of exogenous cytochrome-b5, leading to a considerable over-prediction. 8. Induction potency of CBZ was predicted in cultured hepatocytes in which 7- ethoxycoumarin O-deethylase was used as an index activity. 9. It seems that for a principally CYP-metabolized substance such as CBZ, all liverderived systems provide useful information for prediction of metabolic routes, rates and interactions.


Xenobiotica | 2002

Inhibition of zaleplon metabolism by cimetidine in the human liver : in vitro studies with subcellular fractions and precision-cut liver slices

Anthony B. Renwick; S.E. Ball; J.M. Tredger; R.J. Price; D.G. Walters; J. Kao; B.G. Lake

1. The effect of cimetidine on the metabolism of zaleplon (ZAL) in human liver subcellular fractions and precision-cut liver slices was investigated. 2. ZAL was metabolized to a number of products including 5-oxo-ZAL (M2), which is known to be formed by aldehyde oxidase, N-desethyl-ZAL (DZAL), which is known to be formed by CYP3A forms, and N-desethyl-5-oxo-ZAL (M1). 3. Human liver microsomes catalysed the NADPH-dependent metabolism of ZAL to DZAL. Kinetic analysis of three microsomal preparations revealed mean (± SEM) S50 and Vmax of 310 ± 24 µM and 920 ± 274 pmol/min/mg protein, respectively. 4. Human liver cytosol preparations catalysed the metabolism of ZAL to M2. Kinetic analysis of three cytosol preparations revealed mean (± SEM), Km and Vmax of 124 ± 14 µM and 564 ± 143 pmol/min/mg protein, respectively. 5. Cimetidine inhibited ZAL metabolism to DZAL in liver microsomes and to M2 in the liver cytosol. With a ZAL substrate concentration of 62 µM, the calculated mean (± SEM, n = 3) IC50 were 596 ± 103 and 231 ± 23 µM for DZAL and M2 formation, respectively. Kinetic analysis revealed that cimetidine was a competitive inhibitor of M2 formation in liver cytosol with a mean (± SEM, n = 3) Ki of 155 ± 16 µM. 6. Freshly cut human liver slices metabolized ZAL to a number of products including 1, M2 and DZAL. 7. Cimetidine inhibited ZAL metabolism in liver slices to M1 and M2, but not to DZAL. Kinetic analysis revealed that cimetidine was a competitive inhibitor of M2 formation in liver slices with an average (n = 2 preparations) Ki of 506 µM. 8. The results demonstrate that cimetidine can inhibit both the CYP3A and aldehyde oxidase pathways of ZAL metabolism in the human liver. Cimetidine appears to be a more potent inhibitor of aldehyde oxidase than of CYP3A forms and hence in vivo is likely to have a more marked effect on ZAL metabolism to M2 than on DZAL formation. 9. The results also demonstrate that precision-cut liver slices may be a useful model system for in vitro drug-interaction studies.


Xenobiotica | 1997

Induction of CYP3A isoforms in cultured precision-cut human liver slices.

Brian G. Lake; Simon E. Ball; Anthony B. Renwick; J. M. Tredger; John Kao; J. A. Beamand; R.J. Price

1. The effect of rifampicin on cytochrome P450 isoforms in the CYP1A and CYP3A subfamilies has been studied in 72-h cultured precision-cut human liver slices. 2. In cultured human liver slices 50 microM rifampicin induced testosterone 6 beta-hydroxylase activity, but had no effect on 7-ethoxyresorufin O-deethylase and 7-methoxyresorufin O-demethylase activities. 3. Western immunoblotting of liver slice microsomes was performed with antibodies to rat CYP1A2 and human CYP3A4. Compared with control (dimethyl sulphoxide only treated) liver slice microsomes, rifampicin increased levels of CYP3A4 but had no effect on CYP1A2. 4. These results demonstrate that rifampicin induces CYP3A isoforms, but not CYP1A2, in cultured human liver slices. Some variability in the magnitude of induction by rifampicin was observed in the six human liver samples examined. 5. These results demonstrate that cultured human liver slices may be used to evaluate the effects of xenobiotics on CYP3A isoforms.


Xenobiotica | 2000

Metabolism of 7-benzyloxy-4-trifluoromethyl-coumarin by human hepatic cytochrome P450 isoforms.

Anthony B. Renwick; D. Surry; R.J. Price; Brian G. Lake; David C. Evans

1. The metabolism of 7-benzyloxy-4-trifluoromethylcoumarin (BFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomal preparations and in cDNA-expressed human cytochrome P450 (CYP) isoforms. 2. Kinetic analysis of the NADPH-dependent metabolism of BFC to HFC in four preparations of pooled human liver microsomes revealed mean (±SEM) Km and Vmax of 8.3±1.3 μM and 454±98 pmol/min/mg protein respectively. 3. The metabolism of BFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing BFC substrate concentrations of 20 and 50 μM (i.e. about two and six times Km respectively). With 20 μM BFC the highest correlations were observed between BFC metabolism and markers of CYP1A2 (r2 = 0.784-0.797) and then with CYP3A (r2 = 0.434-0.547) isoforms, whereas with 50 μM BFC the highest correlations were observed between BFC metabolism and markers of CYP3A (r2 = 0.679-0.837) and then with CYP1A2 (r2 = 0.421-0.427) isoforms. At both BFC substrate concentrations, lower correlations were observed between BFC metabolism and enzymatic markers for CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP4A9/11. 4. Using human β-lymphoblastoid cell microsomes containing cDNA-expressed CYP isoforms, 20 μM BFC was metabolized by CYP1A2 and CYP3A4, with lower rates of metabolism being observed with CYP2C9 and CYP2C19. Kinetic studies with the CYP1A2 and CYP3A4 preparations demonstrated a lower Km with the CYP1A2 preparation, but a higher Vmax with the CYP3A4 preparation. 5. The metabolism of 20 μM BFC in human liver microsomes was inhibited to 37-48% of control by 5-100 μM of the mechanism-based CYP1A2 inhibitor furafylline and to 64-69% of control by 5-100 μM of the mechanism-based CYP3A4 inhibitor roleandomycin. While some inhibition of BFC metabolism was observed in the presence of 100 and 200 μM diethyldithiocarbamate, the addition of 2-50 μM sulphaphenazole, 50-500 μM Smephenytoin and 2-50 μM quinidine had little effect. 6. The metabolism of 20 μM BFC to HFC in human liver microsomes was also inhibited by an antibody to CYP3A4, whereas antibodies to CYP2C8}9 and CYP2D6 had no effect. 7. In summary, by correlation analysis, use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFC appears metabolized by a number of CYP isoforms in human liver. BFC metabolism appears to be primarily catalysed by CYP1A2 and CYP3A4, with possibly some contribution by CYP2C9, CYP2C19 and perhaps other CYP isoforms. 8. The results also demonstrate the importance of the selection of an appropriate substrate concentration when conducting reaction phenotyping studies with human hepatic CYP isoforms.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 1999

Inhibition of xenobiotic-induced genotoxicity in cultured precision-cut human and rat liver slices

Brian G. Lake; Jenny A. Beamand; J. Michael Tredger; Paula T Barton; Anthony B. Renwick; Roger J. Price

In this study precision-cut liver slices have been used to evaluate the effects of the flavone tangeretin, the flavonoid glycoside naringin and the flavanone naringenin (the aglycone derived from naringin) on xenobiotic-induced genotoxicity. Liver slices were cultured for 24 h in medium containing [3H]thymidine and the test compounds and then processed for autoradiographic determination of unscheduled DNA synthesis (UDS). The cooked food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) markedly induced UDS in cultured human liver slices and both 2-acetylaminofluorene (2-AAF) and aflatoxin B1 (AFB1) induced UDS in cultured rat liver slices. Tangeretin (20 and 50 microM) was found to be a potent inhibitor of 5 and 50 microM PhIP-induced UDS in human liver slices, whereas 20 and 50 microM naringenin was ineffective and naringin only inhibited genotoxicity at a concentration of 1000 microM. In rat liver slices 50 microM tangeretin inhibited 10 and 50 microM 2-AAF-induced UDS, whereas 50 microM naringenin and 100 and 1000 microM naringin were ineffective. None of the three flavonoids examined inhibited 5 microM AFB1-induced UDS in rat liver slices. The inhibition of PhIP- and 2-AAF-induced UDS by tangeretin is probably attributable to the inhibition of the human and rat cytochrome P-450 isoforms which are responsible for the bioactivation of these two genotoxins. Although flavonoids can modulate xenobiotic-induced genotoxicity in human and rat liver slices, any protective effect is dependent on the particular combination of genotoxin and flavonoid examined. These results demonstrate that cultured precision-cut liver slices may be utilised as an in vitro model system to examine the modulation of xenobiotic-induced genotoxicity by flavonoids and other dietary components.


Xenobiotica | 2000

CYP isoform induction screening in 96-well plates: use of 7-benzyloxy-4-trifluoromethylcoumarin as a substrate for studies with rat hepatocytes

R.J. Price; D. Surry; Anthony B. Renwick; G. Meneses-Lorente; Brian G. Lake; David C. Evans

1. In this study, 7-benzyloxy-4-trifluoromethylcoumarin (BFC) was evaluated as a substrate to assess the induction of cytochrome P450 (CYP) isoform enzyme activities in rat hepatocytes using a 96-well plate format. 2. BFC was metabolized by both untreated and sodium phenobarbitone (NaPB)-treated rat hepatocytes in a time- and concentration-dependent manner to the highly fluorescent product 7-hydroxy-4-trifluoromethylcoumarin (HFC). 3. HFC was extensively conjugated with D-glucuronic acid and/or sulphate in both untreated and NaPB-treated rat hepatocytes, thus necessitating the inclusion of an enzymatic deconjugation step in the assay procedure. 4. The time-course of induction of 7-ethoxyresorufin metabolism by the CYP1A inducer beta-naphthoflavone (BNF), 7-benzyloxyresorufin metabolism by the CYP2B inducer NaPB and BFC metabolism b both BNF and NaPB was studied in rat hepatocytes treated for 24-96 h. The optimal time for induction of metabolism of all three substrates was 72 h, with no medium changes being necessary during this period. 5. The effect of treatment with 0.5-20 microM BNF, 50-2000 microM NaPB, 2-20 microM dexamethasone (DEX), 20-100 microM methylclofenapate (MCP), and 50 and 200 microM isoniazid (ISN) for 72 h on BFC metabolism in cultured rat hepatocytes was studied. BFC metabolism was induced by treatment with BNF, NaPB and MCP, but not with either DEX or ISN. 6. The metabolism of BFC in liver microsomes from the control rat and rat treated with CYP isoform inducers was also studied. BFC metabolism was induced by treatment with NaPB, BNF and DEX. 7. The metabolism of BFC was also studied using microsomes from baculovirus-infected insect cells containing rat cDNA-expressed CYP1A, CYP2B, CYP2C and CYP3A isoforms. Whereas BFC was metabolized to some extent by all the rat cDNA-expressed CYP isoforms examined, at a substrate concentration of 2.5 microM the greatest rates of BFC metabolism were observed with the CYP1A1, CYP1A2 and CYP2B1 preparations. 8. In summary, the results demonstrate that BFC is a good substrate for assessing the induction of CYP1A and CYP2B isoforms in rat hepatocytes in a 96-well plate format.


Archives of Toxicology | 1996

Comparison of the toxicity of allyl alcohol, coumarin and menadione in precision-cut rat, guinea-pig, Cynomolgus monkey and human liver slices

Roger J. Price; Harsha Mistry; Paula T. Wield; Anthony B. Renwick; Jenny A. Beamand; Brian G. Lake

Abstract The toxicity of allyl alcohol, coumarin and menadione has been studied in precision-cut liver slice cultures. Liver slices were prepared from male Sprague- Dawley rats, male Dunkin-Hartley guinea-pigs and from samples of Cynomolgus monkey and human liver using a Krumdieck tissue slicer. The liver slices were cultured with the test compounds for 24h in a dynamic organ culture system. Toxicity was assessed by measurement of protein synthesis, potassium content and the MTT assay. At the concentrations examined, menadione produced marked toxicity in liver slices from all four species, whereas rat liver slices were less susceptible to allyl alcohol toxicity. Coumarin produced concentration-dependent toxic effects in rat and guinea-pig liver slices, whereas Cynomolgus monkey and human liver slices were relatively resistant, especially at low coumarin concentrations. At some concentrations of the test compounds examined, the MTT assay appeared to be a less sensitive indicator of toxicity than either protein synthesis or potassium content. These results demonstrate the usefulness of precision-cut liver slices for assessing species differences in xenobiotic-induced toxicity.


Xenobiotica | 2001

Metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin by human hepatic CYP isoforms: evidence for selectivity towards CYP3A4.

Anthony B. Renwick; D.F.V. Lewis; S. Fulford; D. Surry; B. Williams; P.D. Worboys; X. Cai; R. W. Wang; R.J. Price; Brian G. Lake; David C. Evans

1. The metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin (BFBFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomes and in cDNA-expressed human liver CYP isoforms. For purposes of comparison, some limited studies were also performed with 7-benzyloxyquinoline (7BQ). 2. Initial interactive docking studies with a homology model of human CYP3A4 indicated that BFBFC was likely to be a selective substrate for CYP3A4 with a relatively high binding affinity, due to the presence of several key hydrogen bonds with active site amino acid residues. 3. Kinetic analysis of NADPH-dependent BFBFC metabolism to HFC in three preparations of pooled human liver microsomes revealed mean (+/- TSEM) Km and Vmax = 4.6 +/- 0.3 microM and 20.0 +/- 3.8 pmol/min/mg protein, respectively. 4. The metabolism of BFBFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing a BFBFC substrate concentration of lO microM (i.e. around twice Km). Good correlations (r2 = 0.736-0.904) were observed between BFBFC metabolism and markers of CYP3A isoforms. 5. While 10O microM BFBFC was metabolized to HFC by cDNA-expressed CYP3A4, little or no metabolism was observed with cDNA-expressed CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. The metabolism of 10 microM BFBFC in human liver microsomes was markedly inhibited by 5-50 microM troleandomycin and 0.2-5 microM ketoconazole, but stimulated by 0.2-10 microM alpha-naphthoflavone. The metabolism of 10 microM BFBFC in human liver microsomes was also markedly inhibited by an antibody to CYP3A4. 7. Kinetic analysis of NADPH-dependent 7BQ metabolism to 7-hydroxyquinoline (7HQ) in human liver microsomes revealed Km and Vmax = 70 microM and 3.39 nmol/min/mg protein, respectively. 8. While 80 microM 7BQ was metabolized to 7HQ by cDNA-expressed CYP3A4, only low rates of metabolism were observed with cDNA-expressed CYPIA2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 9. In summary, by correlation analysis, the use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFBFC metabolism in human liver microsomes appears to be primarily catalysed by CYP3A4. BFBFC may be a useful fluorescent probe substrate for human hepatic CYP3A4, but compared with 7BQ has only a low rate of metabolism in human liver microsomes.

Collaboration


Dive into the Anthony B. Renwick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger J. Price

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge