Anthony C.F. Perry
University of Bath
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony C.F. Perry.
Nature | 1998
Teruhiko Wakayama; Anthony C.F. Perry; M Zuccotti; K R Johnson; Ryuzo Yanagimachi
Until recently, fertilization was the only way to produce viable mammalian offspring, a process implicitly involving male and female gametes. However, techniques involving fusion of embryonic or fetal somatic cells with enucleated oocytes have become steadily more successful in generating cloned young. Dolly the sheep was produced by electrofusion of sheep mammary-derived cells with enucleated sheep oocytes. Here we investigate the factors governing embryonic development by introducing nuclei from somatic cells (Sertoli, neuronal and cumulus cells) taken from adult mice into enucleated mouse oocytes. We found that some enucleated oocytes receiving Sertoli or neuronal nuclei developed in vitro and implanted following transfer, but none developed beyond 8.5 days post coitum; however, a high percentage of enucleated oocytes receiving cumulus nuclei developed in vitro. Once transferred, many of these embryos implanted and, although most were subsequently resorbed, a significant proportion (2 to 2.8%) developed to term. These experiments show that for mammals, nuclei from terminally differentiated, adult somatic cells of known phenotype introduced into enucleated oocytes are capable of supporting full development.
Nature | 2000
Teruhiko Wakayama; Yoichi Shinkai; Kellie L.K. Tamashiro; Hiroyuki Niida; D. Caroline Blanchard; Robert J. Blanchard; Atsuo Ogura; Kentaro Tanemura; Makoto Tachibana; Anthony C.F. Perry; Diana Foukal Colgan; Peter Mombaerts; Ryuzo Yanagimachi
Mice have been cloned by nuclear transfer into enucleated oocytes, and here we describe the reiterative cloning of mice to four and six generations in two independent lines. Successive generations showed no signs of prematureageing, as judged by gross behaviouralparameters, and there was no evidence of shortening of telomeres at the ends of chromosomes, normally an indicator of cellular senescence — in fact, these appeared to increase slightly in length. This increase is surprising, given that the number of mitotic divisions greatly exceeds that of sexually produced animals and that any deleterious effects of cloning might be expected to be amplified in sequentially cloned mice. Our results offer a new approach to the study of organismal ageing.
Structure | 1998
Mark J. Banfield; John J Barker; Anthony C.F. Perry; R. Leo Brady
BACKGROUND Proteins belonging to the phosphatidylethanolamine-binding protein (PEBP) family are highly conserved throughout nature and have no significant sequence homology with other proteins of known structure or function. A variety of biological roles have previously been described for members of this family, including lipid binding, roles as odorant effector molecules or opioids, interaction with the cell-signalling machinery, regulation of flowering plant stem architecture, and a function as a precursor protein of a bioactive brain neuropeptide. To date, no experimentally derived structural information has been available for this protein family. In this study we have used X-ray crystallography to determine the three-dimensional structure of human PEBP (hPEBP), in an attempt to clarify the biological role of this unique protein family. RESULTS The crystal structures of two forms of hPEBP have been determined: one in the native state (at 2.05 A resolution) and one in complex with cacodylate (at 1.75 A resolution). The crystal structures reveal that hPEBP adopts a novel protein topology, dominated by the presence of a large central beta sheet, and is expected to represent the archaetypal fold for this family of proteins. Two potential functional sites have been identified from the structure: a putative ligand-binding site and a coupled cleavage site. hPEBP forms a dimer in the crystal with a distinctive dipole moment that may orient the oligomer for membrane binding. CONCLUSIONS The crystal structure of hPEBP suggests that the ligand-binding site could accommodate the phosphate head groups of membrane lipids, therefore allowing the protein to adhere to the inner leaf of bilipid membranes where it would be ideally positioned to relay signals from the membrane to the cytoplasm. The structure also suggests that ligand binding may lead to coordinated release of the N-terminal region of the protein to form the hippocampal neurostimulatory peptide, which is known to be active in the development of the hippocampus. These studies are consistent with a primary biological role for hPEBP as a transducer of signals from the interior membrane surface.
The EMBO Journal | 2006
Shisako Shoji; Naoko Yoshida; Manami Amanai; Maki Ohgishi; Tomoyuki Fukui; Satoko Fujimoto; Yoshikazu Nakano; Eriko Kajikawa; Anthony C.F. Perry
Fertilizable mammalian oocytes are arrested at the second meiotic metaphase (mII) by the cyclinB‐Cdc2 heterodimer, maturation promoting factor (MPF). MPF is stabilized via the activity of an unidentified cytostatic factor (CSF), thereby suspending meiotic progression until fertilization. We here present evidence that a conserved 71 kDa mammalian orthologue of Xenopus XErp1/Emi2, which we term endogenous meiotic inhibitor 2 (Emi2) is an essential CSF component. Depletion in situ of Emi2 by RNA interference elicited precocious meiotic exit in maturing mouse oocytes. Reduction of Emi2 released mature mII oocytes from cytostatic arrest, frequently inducing cytodegeneration. Mos levels autonomously declined to undetectable levels in mII oocytes. Recombinant Emi2 reduced the propensity of mII oocytes to exit meiosis in response to activating stimuli. Emi2 and Cdc20 proteins mutually interact and Cdc20 ablation negated the ability of Emi2 removal to induce metaphase release. Consistent with this, Cdc20 removal prevented parthenogenetic or sperm‐induced meiotic exit. These studies show in intact oocytes that the interaction of Emi2 with Cdc20 links activating stimuli to meiotic resumption at fertilization and during parthenogenesis in mammals.
Biology of Reproduction | 2006
Manami Amanai; Manjula Brahmajosyula; Anthony C.F. Perry
Abstract Prototypical microRNAs (miRNAs) are 21~25-base-pair RNAs that regulate differentiation, carcinogenesis, and pluripotency by eliminating mRNAs or blocking their translation, in a process that is collectively termed RNA interference (RNAi). In zebrafish, RNAi mediated by miRNAs regulates early development, and in mice embryos that lack the miRNA precursor processor Dicer are nonviable. However, the roles of miRNAs in mammalian fertilization are unknown. In this report, we show using microarrays that miRNAs are present in mouse sperm structures that enter the oocyte at fertilization. The sperm contained a broad profile of miRNAs and a subset of potential mRNA targets, which were expressed in fertilizable metaphase II (mII) oocytes. Oocytes contained transcripts for the RNA-induced silencing complex (RISC) catalytic subunit, EIF2C3 (formerly AGO3). However, the levels of sperm-borne miRNA (measured by quantitative PCR) were low relative to those of unfertilized mII oocytes, and fertilization did not alter the mII oocyte miRNA repertoire that included the most abundant sperm-borne miRNAs. Coinjection of mII oocytes with sperm heads plus anti-miRNAs to suppress miRNA function did not perturb pronuclear activation or preimplantation development. In contrast, nuclear transfer by microinjection altered the miRNA profile of enucleated oocytes. These data suggest that sperm-borne prototypical miRNAs play a limited role, if any, in mammalian fertilization or early preimplantation development.
The FASEB Journal | 2006
Fumihiko Ishikawa; Hideki Shimazu; Leonard D. Shultz; Mitsuhiro Fukata; Ryu Nakamura; Bonnie L. Lyons; Kazuya Shimoda; Shinji Shimoda; Takaaki Kanemaru; Kei-ichiro Nakamura; Hiroyuki Ito; Yoshikazu Kaji; Anthony C.F. Perry; Mine Harada
To obtain insights into the cardiomyogenic potential of hematopoietic tissue, we intravenously (i.v.) injected purified hematopoietic stem/progenitor cells into newborn recipients that may fully potentiate the developmental plasticity of stem cells. Transplantation of mouse bone marrow (BM) lineage antigen‐negative (Lin−) cells resulted in the generation of the cells that displayed cardiomyocyte‐specific antigenic profiles and contractile function when transplanted into syngeneic newborn recipients. To clarify the mechanism underlying the cardiomyogenic potential, green fluorescent protein (GFP)‐labeled BM Lin−ScaI+ hematopoietic progenitors were transplanted into neonatal mice constitutively expressing cyan fluorescence protein (CFP). Lambda image acquisition and linear unmixing analysis using confocal microscopy successfully separated GFP and CFP, and revealed that donor GFP+ cardiomyocytes coexpressed host‐derived CFP. We further reconstituted human hemopoietic‐ and immune systems in mice by injecting human cord blood (CB)‐derived Lin−CD34+CD38− hematopoietic stem cells (HSCs) into neonatal T cell−B cell−NK cell− immune‐deficient NOD/SCID/IL2rγnull mice. Fluoroescence in situ hybridization analysis of recipient cardiac tissues demonstrated that human and murine chromosomes were colocalized in the same cardiomyocytes, indicating that cell fusion occurred between human hematopoietic progeny and mouse cardiomyocytes. These syngeneic‐ and xenogeneic neonatal transplantations provide compelling evidence that hematopoietic stem/progenitor cells contribute to the postnatal generation of cardiomyocytes through cell fusion, not through transdifferentiation.— Ishikawa, F., Shimazu, H., Shultz, L. D., Fukata, M., Nakamura, R., Lyons, B., Shimoda, K., Shimoda, S., Kanemaru, T., Nakamura, K‐i., Ito, H., Kaji, Y., Perry, A. C. F., Harada, M. Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J. 20, E11–E17 (2006)
Cell Stem Cell | 2012
Shunichi Suzuki; Masaki Iwamoto; Yoriko Saito; Dai-ichiro Fuchimoto; Shoichiro Sembon; Misae Suzuki; Satoshi Mikawa; Michiko Hashimoto; Yuki Aoki; Yuho Najima; Shinsuke Takagi; Nahoko Suzuki; Emi Suzuki; Masanori Kubo; Jun Mimuro; Yuji Kashiwakura; Seiji Madoiwa; Yoichi Sakata; Anthony C.F. Perry; Fumihiko Ishikawa; Akira Onishi
A porcine model of severe combined immunodeficiency (SCID) promises to facilitate human cancer studies, the humanization of tissue for xenotransplantation, and the evaluation of stem cells for clinical therapy, but SCID pigs have not been described. We report here the generation and preliminary evaluation of a porcine SCID model. Fibroblasts containing a targeted disruption of the X-linked interleukin-2 receptor gamma chain gene, Il2rg, were used as donors to generate cloned pigs by serial nuclear transfer. Germline transmission of the Il2rg deletion produced healthy Il2rg(+/-) females, while Il2rg(-/Y) males were athymic and exhibited markedly impaired immunoglobulin and T and NK cell production, robustly recapitulating human SCID. Following allogeneic bone marrow transplantation, donor cells stably integrated in Il2rg(-/Y) heterozygotes and reconstituted the Il2rg(-/Y) lymphoid lineage. The SCID pigs described here represent a step toward the comprehensive evaluation of preclinical cellular regenerative strategies.
Nature Biotechnology | 2001
Anthony C.F. Perry; Andrea Rothman; Jose I. de las Heras; Paul Feinstein; Peter Mombaerts; Howard J. Cooke; Teruhiko Wakayama
Mammalian genome characterization and biotechnology each require the mobilization of large DNA segments to produce transgenic animals. We recently showed that mouse metaphase II (mII) oocytes could efficiently promote transgenesis (mII transgenesis) when coinjected with sperm and small (<5 kilobases) ubiquitously expressed transgenes (tgs). We have extended this work and now report that mII transgenesis can readily be applied to a range of larger tgs (11.9–170 kilobases), including bacterial and mammalian artificial chromosome (BAC and MAC) constructs. The efficiency of large-construct mII transgenesis was at least as high as that with small constructs; 11–47% of offspring carried the large tgs. More than 95% of these transgenic founders transmitted the tg to offspring. These data demonstrate the ability of mII transgenesis to deliver large tgs efficiently.
Nature Biotechnology | 2015
Katrine S. Bosley; Michael R. Botchan; Annelien L. Bredenoord; Dana Carroll; R. Alta Charo; Emmanuelle Charpentier; Ron Cohen; Jacob E. Corn; Jennifer A. Doudna; Guoping Feng; Henry T. Greely; Rosario Isasi; Weihzi Ji; Jin-Soo Kim; Bartha Maria Knoppers; Edward Lanphier; Jinsong Li; Robin Lovell-Badge; G. Steven Martin; Jonathan D. Moreno; Luigi Naldini; Martin F. Pera; Anthony C.F. Perry; J. Craig Venter; Feng Zhang; Qi Zhou
Nature Biotechnology asks selected members of the international community to comment on the ethical issues raised by the prospect of CRISPR-Cas9 engineering of the human germline.
Development | 2010
Toru Suzuki; Emi Suzuki; Naoko Yoshida; Atsuko Kubo; Hongmei Li; Erina Okuda; Manami Amanai; Anthony C.F. Perry
The oocytes of vertebrates are typically arrested at metaphase II (mII) by the cytostatic factor Emi2 until fertilization. Regulatory mechanisms in Xenopus Emi2 (xEmi2) are understood in detail but contrastingly little is known about the corresponding mechanisms in mammals. Here, we analyze Emi2 and its regulatory neighbours at the molecular level in intact mouse oocytes. Emi2, but not xEmi2, exhibited nuclear targeting. Unlike xEmi2, separable N- and C-terminal domains of mouse Emi2 modulated metaphase establishment and maintenance, respectively, through indirect and direct mechanisms. The C-terminal activity was mapped to the potential phosphorylation target Tx5SxS, a destruction box (D-box), a lattice of Zn2+-coordinating residues and an RL domain. The minimal region of Emi2 required for its cytostatic activity was mapped to a region containing these motifs, from residue 491 to the C terminus. The cytostatic factor Mos-MAPK promoted Emi2-dependent metaphase establishment, but Mos autonomously disappeared from meiotically competent mII oocytes. The N-terminal Plx1-interacting phosphodegron of xEmi2 was apparently shifted to within a minimal fragment (residues 51-300) of mouse Emi2 that also contained a calmodulin kinase II (CaMKII) phosphorylation motif and which was efficiently degraded during mII exit. Two equimolar CaMKII γ isoform variants were present in mII oocytes, neither of which phosphorylated Emi2 in vitro, consistent with the involvement of additional factors. No evidence was found that calcineurin is required for mouse mII exit. These data support a model in which mammalian meiotic establishment, maintenance and exit converge upon a modular Emi2 hub via evolutionarily conserved and divergent mechanisms.