Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony D. Keefe is active.

Publication


Featured researches published by Anthony D. Keefe.


Nature | 2001

Functional proteins from a random-sequence library

Anthony D. Keefe; Jack W. Szostak

Functional primordial proteins presumably originated from random sequences, but it is not known how frequently functional, or even folded, proteins occur in collections of random sequences. Here we have used in vitro selection of messenger RNA displayed proteins, in which each protein is covalently linked through its carboxy terminus to the 3′ end of its encoding mRNA, to sample a large number of distinct random sequences. Starting from a library of 6 × 1012 proteins each containing 80 contiguous random amino acids, we selected functional proteins by enriching for those that bind to ATP. This selection yielded four new ATP-binding proteins that appear to be unrelated to each other or to anything found in the current databases of biological proteins. The frequency of occurrence of functional proteins in random-sequence libraries appears to be similar to that observed for equivalent RNA libraries.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The use of mRNA display to select high-affinity protein-binding peptides

David Sloan Wilson; Anthony D. Keefe; Jack W. Szostak

We report the use of “mRNA display,” an in vitro selection technique, to identify peptide aptamers to a protein target. mRNA display allows for the preparation of polypeptide libraries with far greater complexity than is possible with phage display. Starting with a library of ≈1013 random peptides, 20 different aptamers to streptavidin were obtained, with dissociation constants as low as 5 nM. These aptamers function without the aid of disulfide bridges or engineered scaffolds, yet possess affinities comparable to those for monoclonal antibody–antigen complexes. The aptamers bind streptavidin with three to four orders of magnitude higher affinity than those isolated previously by phage display from lower complexity libraries of shorter random peptides. Like previously isolated peptides, they contain an HPQ consensus motif. This study shows that, given sufficient length and diversity, high-affinity aptamers can be obtained even from random nonconstrained peptide libraries. By engineering structural constraints into these ultrahigh complexity peptide libraries, it may be possible to produce binding agents with subnanomolar binding constants.


Nature Reviews Drug Discovery | 2017

DNA-encoded chemistry: enabling the deeper sampling of chemical space

Robert A. Goodnow; Christoph E. Dumelin; Anthony D. Keefe

DNA-encoded chemical library technologies are increasingly being adopted in drug discovery for hit and lead generation. DNA-encoded chemistry enables the exploration of chemical spaces four to five orders of magnitude more deeply than is achievable by traditional high-throughput screening methods. Operation of this technology requires developing a range of capabilities including aqueous synthetic chemistry, building block acquisition, oligonucleotide conjugation, large-scale molecular biological transformations, selection methodologies, PCR, sequencing, sequence data analysis and the analysis of large chemistry spaces. This Review provides an overview of the development and applications of DNA-encoded chemistry, highlighting the challenges and future directions for the use of this technology.


ChemBioChem | 2017

Discovery of a Potent BTK Inhibitor with a Novel Binding Mode by Using Parallel Selections with a DNA‐Encoded Chemical Library

John W. Cuozzo; Paolo A. Centrella; Diana Gikunju; Sevan Habeshian; Christopher D. Hupp; Anthony D. Keefe; Eric A. Sigel; Holly H. Soutter; Heather Thomson; Ying Zhang; Matthew A. Clark

We have identified and characterized novel potent inhibitors of Brutons tyrosine kinase (BTK) from a single DNA‐encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co‐crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile‐based selection strategies using DNA‐encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Discovery of cofactor-specific, bactericidal Mycobacterium tuberculosis InhA inhibitors using DNA-encoded library technology

Holly H. Soutter; Paolo A. Centrella; Matthew A. Clark; John W. Cuozzo; Christoph E. Dumelin; Marie-Aude Guie; Sevan Habeshian; Anthony D. Keefe; Kaitlyn M. Kennedy; Eric A. Sigel; Dawn M. Troast; Ying Zhang; Andrew D. Ferguson; Gareth Davies; Eleanor R. Stead; Jason Breed; Prashanti Madhavapeddi; Jon Read

Significance The increasing prevalence of multidrug-resistant strains of tuberculosis has created an urgent need for novel therapies to treat tuberculosis infections. Here we have demonstrated the successful utilization of the DNA-encoded X-Chem technology for the discovery inhibitors of Mycobacterium tuberculosis enoyl–acyl-carrier protein (ACP) reductase, InhA, a validated target for the treatment of tuberculosis. The identified inhibitors are cofactor specific and have activity in multiple cellular assays. Crystal structures of representative compounds from five chemical series revealed that the compounds bind adjacent to the NADH cofactor and adopt a variety of conformations, including two previously unreported binding modes. The compounds identified may serve as useful leads in the development of new antibacterial drugs with efficacy against multidrug-resistant tuberculosis. Millions of individuals are infected with and die from tuberculosis (TB) each year, and multidrug-resistant (MDR) strains of TB are increasingly prevalent. As such, there is an urgent need to identify novel drugs to treat TB infections. Current frontline therapies include the drug isoniazid, which inhibits the essential NADH-dependent enoyl–acyl-carrier protein (ACP) reductase, InhA. To inhibit InhA, isoniazid must be activated by the catalase-peroxidase KatG. Isoniazid resistance is linked primarily to mutations in the katG gene. Discovery of InhA inhibitors that do not require KatG activation is crucial to combat MDR TB. Multiple discovery efforts have been made against InhA in recent years. Until recently, despite achieving high potency against the enzyme, these efforts have been thwarted by lack of cellular activity. We describe here the use of DNA-encoded X-Chem (DEX) screening, combined with selection of appropriate physical properties, to identify multiple classes of InhA inhibitors with cell-based activity. The utilization of DEX screening allowed the interrogation of very large compound libraries (1011 unique small molecules) against multiple forms of the InhA enzyme in a multiplexed format. Comparison of the enriched library members across various screening conditions allowed the identification of cofactor-specific inhibitors of InhA that do not require activation by KatG, many of which had bactericidal activity in cell-based assays.


ACS Medicinal Chemistry Letters | 2017

Structure Based Design of Non-Natural Peptidic Macrocyclic Mcl-1 Inhibitors

Jeffrey W. Johannes; Stephanie Bates; Carl Beigie; Matthew A. Belmonte; John Breen; Shenggen Cao; Paolo A. Centrella; Matthew A. Clark; John W. Cuozzo; Christoph E. Dumelin; Andrew D. Ferguson; Sevan Habeshian; David Hargreaves; Camil Joubran; Steven Kazmirski; Anthony D. Keefe; Michelle L. Lamb; Haiye Lan; Yunxia Li; Hao Ma; Scott Mlynarski; Martin J. Packer; Philip Rawlins; Daniel W. Robbins; Haidong Shen; Eric A. Sigel; Holly H. Soutter; Nancy Su; Dawn M. Troast; Haiyun Wang

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 μM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a β-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 μM and Bcl-xL at >99 μM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 μM after 6 h.


Artificial DNA: PNA & XNA | 2014

Universal strategies for the DNA-encoding of libraries of small molecules using the chemical ligation of oligonucleotide tags

Alexander Litovchick; Matthew A. Clark; Anthony D. Keefe

The affinity-mediated selection of large libraries of DNA-encoded small molecules is increasingly being used to initiate drug discovery programs. We present universal methods for the encoding of such libraries using the chemical ligation of oligonucleotides. These methods may be used to record the chemical history of individual library members during combinatorial synthesis processes. We demonstrate three different chemical ligation methods as examples of information recording processes (writing) for such libraries and two different cDNA-generation methods as examples of information retrieval processes (reading) from such libraries. The example writing methods include uncatalyzed and Cu(I)-catalyzed alkyne-azide cycloadditions and a novel photochemical thymidine-psoralen cycloaddition. The first reading method “relay primer-dependent bypass” utilizes a relay primer that hybridizes across a chemical ligation junction embedded in a fixed-sequence and is extended at its 3′-terminus prior to ligation to adjacent oligonucleotides. The second reading method “repeat-dependent bypass” utilizes chemical ligation junctions that are flanked by repeated sequences. The upstream repeat is copied prior to a rearrangement event during which the 3′-terminus of the cDNA hybridizes to the downstream repeat and polymerization continues. In principle these reading methods may be used with any ligation chemistry and offer universal strategies for the encoding (writing) and interpretation (reading) of DNA-encoded chemical libraries.


SLAS DISCOVERY: Advancing Life Sciences R&D | 2018

Agonists and Antagonists of Protease-Activated Receptor 2 Discovered within a DNA-Encoded Chemical Library Using Mutational Stabilization of the Target:

Dean G. Brown; Giles Albert Brown; Paolo A. Centrella; Kaan Certel; Robert M. Cooke; John W. Cuozzo; Niek Dekker; Christoph E. Dumelin; Andrew D. Ferguson; Cédric Fiez-Vandal; Stefan Geschwindner; Marie-Aude Guie; Sevan Habeshian; Anthony D. Keefe; Oliver Schlenker; Eric A. Sigel; Arjan Snijder; Holly T. Soutter; Linda Sundström; Dawn M. Troast; Giselle R. Wiggin; Jing Zhang; Ying Zhang; Matthew A. Clark

The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.


Cancer Research | 2017

Abstract 5084: Potent and isoform-selective ATAD2 bromodomain inhibitor with unprecedented chemical structure and mode of action

Amaury Ernesto Fernandez-Montalvan; Markus Berger; Benno Kuropka; Seong Joo Koo; Volker Badock; Joerg Weiske; Simon Holton; A. Chaikuad; Laura Díaz-Sáez; Jim Bennett; Oleg Federov; Kilian Huber; Paolo A. Centrella; Matthew A. Clark; Christoph E. Dumelin; Eric A. Sigel; Holly S. Soutter; Dawn M. Troast; Ying Zhang; John W. Cuozzo; Anthony D. Keefe; Didier Roche; Vincent Rodeschini; Jan Hübner; Hilmar Weinmann; Ingo V. Hartung; Matyas Gorjanacz

ATAD2 (ATPase family AAA-domain containing protein 2, also called ANCCA) is an epigenetic regulator that binds to chromatin through its bromodomain (BD), a motif specialized for acetyl-lysine recognition. ATAD2 directly associates with multiple transcription factors such as ERα, AR, E2F, and Myc; hence, ATAD2 has been proposed to act as a co-factor for oncogenic transcription factors. Furthermore, we have recently reported a novel role for ATAD2 during DNA replication, uncovering interactions between ATAD2 and histone acetylation marks on newly synthesized histone H4. High expression of ATAD2 strongly correlates with poor patient prognosis in multiple tumor types, including gastric, endometrial, hepatocellular, ovarian, breast and lung cancers. However, the exact function of ATAD2 in these tumor types remains unclear. A more thorough validation of ATAD2 as a therapeutic target is hampered by the lack of isoform-selective, potent and cellularly active ATAD2 inhibitors. A systematic assessment of crystal structures of BD-containing protein family predicted that development of selective inhibitors of ATAD2 would be challenging. In line with this prediction, only limited progress in developing lead compounds targeting ATAD2 has been reported so far. A few notable exceptions relied on fragments as starting points, however, their weak potency, insufficient selectivity against other BDs, permeability limitations or modest cellular activity have curbed their further development towards drug candidates. Here we embarked on a novel strategy to identify ATAD2 inhibitors: 11 different DNA-encoded libraries adding up to 67 billion unique encoded compounds were combined and incubated with ATAD2 BD followed by two rounds of affinity-mediated selection. This approach provided with several series of binders, for which specific target engagement of their SMOL moiety upon off-DNA synthesis was confirmed in biochemical and biophysical assays. Several rounds of potency optimization led to the identification of BAY-850, a highly potent and ATAD2 (isoform A) mono-selective inhibitor, which holds an amine substituted 3-(2-furyl)benzamide core. This compound shows - as revealed by size exclusion chromatography and native mass spectrometry - a novel mode of action for a BD inhibitor based on specific target dimerization. In a cellular fluorescence recovery after photobleaching (FRAP) assay BAY-850 displaced wild-type ATAD2 from the chromatin to the same extent as the genetic mutagenesis of ATAD2 BD. In contrast, chemically very similar inactive control compounds showed no major effects on ATAD2 association with the chromatin. These results qualify BAY-850 as the first biologically active ATAD2 isoform A-specific chemical probe, which will enable further elucidation of the cancer biology of this intriguing protein. Citation Format: Amaury E. Fernandez-Montalvan, Markus Berger, Benno Kuropka, Seong Joo Koo, Volker Badock, Joerg Weiske, Simon J. Holton, Apirat Chaikuad, Laura Diaz-Saez, James Bennett, Oleg Federov, Kilian Huber, Paolo Centrella, Matthew A. Clark, Christoph E. Dumelin, Eric A. Sigel, Holly S. Soutter, Dawn M. Troast, Ying Zhang, John W. Cuozzo, Anthony D. Keefe, Didier Roche, Vincent Rodeschini, Jan Hubner, Hilmar Weinmann, Ingo V. Hartung, Matyas Gorjanacz. Potent and isoform-selective ATAD2 bromodomain inhibitor with unprecedented chemical structure and mode of action [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 5084. doi:10.1158/1538-7445.AM2017-5084


ACS Medicinal Chemistry Letters | 2017

Correction to “Structure Based Design of Non-Natural Peptidic Macrocyclic Mcl-1 Inhibitors”

Jeffrey W. Johannes; Stephanie Bates; Carl Beigie; Matthew A. Belmonte; John Breen; Shenggen Cao; Paolo A. Centrella; Matthew A. Clark; John W. Cuozzo; Christoph E. Dumelin; Andrew D. Ferguson; Sevan Habeshian; David Hargreaves; Camil Joubran; Steven Kazmirski; Anthony D. Keefe; Michelle L. Lamb; Haiye Lan; Yunxia Li; Hao Ma; Scott Mlynarski; Martin J. Packer; Philip Rawlins; Daniel W. Robbins; Haidong Shen; Eric A. Sigel; Holly H. Soutter; Nancy Su; Dawn M. Troast; Haiyun Wang

[This corrects the article DOI: 10.1021/acsmedchemlett.6b00464.].

Collaboration


Dive into the Anthony D. Keefe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Wagner

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sevan Habeshian

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D. Ferguson

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge