Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony D. William is active.

Publication


Featured researches published by Anthony D. William.


Journal of Medicinal Chemistry | 2011

Discovery of the Macrocycle 11-(2-Pyrrolidin-1-yl-ethoxy)-14, 19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a Potent Janus Kinase 2/Fms-Like Tyrosine Kinase-3 (JAK2/FLT3) Inhibitor for the Treatment of Myelofibrosis and Lymphoma

Anthony D. William; Angeline C.-H. Lee; Stéphanie Blanchard; Anders Poulsen; Ee Ling Teo; Harish Nagaraj; Evelyn Tan; Dizhong Chen; Meredith Williams; Eric T. Sun; Kee Chuan Goh; Wai Chung Ong; Siok Kun Goh; Stefan Hart; Ramesh Jayaraman; Mohammed Khalid Pasha; Kantharaj Ethirajulu; Jeanette Marjorie Wood; Brian W. Dymock

Discovery of the activating mutation V617F in Janus Kinase 2 (JAK2(V617F)), a tyrosine kinase critically involved in receptor signaling, recently ignited interest in JAK2 inhibitor therapy as a treatment for myelofibrosis (MF). Herein, we describe the design and synthesis of a series of small molecule 4-aryl-2-aminopyrimidine macrocycles and their biological evaluation against the JAK family of kinase enzymes and FLT3. The most promising leads were assessed for their in vitro ADME properties culminating in the discovery of 21c, a potent JAK2 (IC(50) = 23 and 19 nM for JAK2(WT) and JAK2(V617F), respectively) and FLT3 (IC(50) = 22 nM) inhibitor with selectivity against JAK1 and JAK3 (IC(50) = 1280 and 520 nM, respectively). Further profiling of 21c in preclinical species and mouse xenograft and allograft models is described. Compound 21c (SB1518) was selected as a development candidate and progressed into clinical trials where it is currently in phase 2 for MF and lymphoma.


Journal of Medicinal Chemistry | 2012

Discovery of Kinase Spectrum Selective Macrocycle (16E)-14-Methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene (SB1317/TG02), a Potent Inhibitor of Cyclin Dependent Kinases (CDKs), Janus Kinase 2 (JAK2), and Fms-like Tyrosine Kinase-3 (FLT3) for the Treatment of Cancer

Anthony D. William; Angeline C.-H. Lee; Kee Chuan Goh; Stéphanie Blanchard; Anders Poulsen; Ee Ling Teo; Harish Nagaraj; Chai Ping Lee; Haishan Wang; Meredith Williams; Eric T. Sun; Changyong Hu; Ramesh Jayaraman; Mohammed Khalid Pasha; Kantharaj Ethirajulu; Jeanette Marjorie Wood; Brian W. Dymock

Herein, we describe the design, synthesis, and SAR of a series of unique small molecule macrocycles that show spectrum selective kinase inhibition of CDKs, JAK2, and FLT3. The most promising leads were assessed in vitro for their inhibition of cancer cell proliferation, solubility, CYP450 inhibition, and microsomal stability. This screening cascade revealed 26 h as a preferred compound with target IC(50) of 13, 73, and 56 nM for CDK2, JAK2 and FLT3, respectively. Pharmacokinetic (PK) studies of 26 h in preclinical species showed good oral exposures. Oral efficacy was observed in colon (HCT-116) and lymphoma (Ramos) xenograft studies, in line with the observed PK/PD correlation. 26h (SB1317/TG02) was progressed into development in 2010 and is currently undergoing phase 1 clinical trials in advanced leukemias and multiple myeloma.


Journal of Computer-aided Molecular Design | 2012

Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

Anders Poulsen; Anthony D. William; Stéphanie Blanchard; Angeline Lee; Harish Nagaraj; Haishan Wang; Eeling Teo; Evelyn Tan; Kee Chuan Goh; Brian W. Dymock

Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.


Journal of Medicinal Chemistry | 2012

Discovery of the Macrocycle (9E)-15-(2-(Pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexacosa-1(24),2,4,9,14(26),15,17,20,22-nonaene (SB1578), a Potent Inhibitor of Janus Kinase 2/Fms-LikeTyrosine Kinase-3 (JAK2/FLT3) for the Treatment of Rheumatoid Arthritis

Anthony D. William; Angeline C.-H. Lee; Anders Poulsen; Kee Chuan Goh; Babita Madan; Stefan Hart; Evelyn Tan; Haishan Wang; Harish Nagaraj; Dizhong Chen; Chai Ping Lee; Eric T. Sun; Ramesh Jayaraman; Mohammad Khalid Pasha; Kantharaj Ethirajulu; Jeanette Marjorie Wood; Brian W. Dymock

Herein, we describe the synthesis and SAR of a series of small molecule macrocycles that selectively inhibit JAK2 kinase within the JAK family and FLT3 kinase. Following a multiparameter optimization of a key aryl ring of the previously described SB1518 (pacritinib), the highly soluble 14l was selected as the optimal compound. Oral efficacy in the murine collagen-induced arthritis (CIA) model for rheumatoid arthritis (RA) supported 14l as a potential treatment for autoimmune diseases and inflammatory disorders such as psoriasis and RA. Compound 14l (SB1578) was progressed into development and is currently undergoing phase 1 clinical trials in healthy volunteers.


Journal of Immunology | 2012

SB1578, a Novel Inhibitor of JAK2, FLT3, and c-Fms for the Treatment of Rheumatoid Arthritis

Babita Madan; Kee Chuan Goh; Stefan Hart; Anthony D. William; Ramesh Jayaraman; Kantharaj Ethirajulu; Brian W. Dymock; Jeanette Marjorie Wood

SB1578 is a novel, orally bioavailable JAK2 inhibitor with specificity for JAK2 within the JAK family and also potent activity against FLT3 and c-Fms. These three tyrosine kinases play a pivotal role in activation of pathways that underlie the pathogenesis of rheumatoid arthritis. SB1578 blocks the activation of these kinases and their downstream signaling in pertinent cells, leading to inhibition of pathological cellular responses. The biochemical and cellular activities of SB1578 translate into its high efficacy in two rodent models of arthritis. SB1578 not only prevents the onset of arthritis but is also potent in treating established disease in collagen-induced arthritis mice with beneficial effects on histopathological parameters of bone resorption and cartilage damage. SB1578 abrogates the inflammatory response and prevents the infiltration of macrophages and neutrophils into affected joints. It also leads to inhibition of Ag-presenting dendritic cells and inhibits the autoimmune component of the disease. In summary, SB1578 has a unique kinase spectrum, and its pharmacological profile provides a strong rationale for the ongoing clinical development in autoimmune diseases.


Journal of Molecular Modeling | 2013

Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3)

Anders Poulsen; Anthony D. William; Stéphanie Blanchard; Harish Nagaraj; Meredith Williams; Haishan Wang; Angeline Lee; Eric T. Sun; Eeling Teo; Evelyn Tan; Kee Chuan Goh; Brian W. Dymock

AbstractA high-throughput screen against Aurora A kinase revealed several promising submicromolar pyrimidine-aniline leads. The bioactive conformation found by docking these leads into the Aurora A ATP-binding site had a semicircular shape. Macrocycle formation was proposed to achieve novelty and selectivity via ring-closing metathesis of a diene precursor. The nature of the optimal linker and its size was directed by docking. In a kinase panel screen, selected macrocycles were active on other kinase targets, mainly FLT3, JAK2, and CDKs. These compounds then became leads in a CDK/FLT3/JAK2 inhibitor project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. Interaction with this residue explains the observed selectivity. The Asp86 residue is conserved in most CDKs, resulting in potent pan-CDK inhibition by these compounds. Optimized macrocycles generally have good DMPK properties, and are efficacious in mouse models of cancer. Compound 5 (SB1317/TG02), a pan-CDK/FLT3/JAK2 inhibitor, was selected for preclinical development, and is now in phase 1 clinical trials. FigureStructure of SB1317 (left). SB1317 docked into CDK2 (right)


Bioorganic & Medicinal Chemistry Letters | 2012

Structure-based optimization of morpholino-triazines as PI3K and mTOR inhibitors

Anders Poulsen; Meredith Williams; Harish Nagaraj; Anthony D. William; Haishan Wang; Chang Kai Soh; Zheng Chang Xiong; Brian Dymock

A virtual screen of our in-house database using various fingerprint techniques returned several triazine hits which were found to be mTOR inhibitors with a slight selectivity over PI3Kα. Using structure-guided lead optimization the inhibitory activity towards mTOR and PI3Kα was increased to the low nanomolar range. Exploiting shape differences in the binding-site allowed for the design of mTOR selective inhibitors. Focus on ligand efficiency ensured the inhibitors retained a low molecular weight and desirable drug-like properties.


Journal of Computer-aided Molecular Design | 2008

Structure-based design of Aurora A & B inhibitors

Anders Poulsen; Anthony D. William; Angeline Lee; Stéphanie Blanchard; Eeling Teo; Weiping Deng; Noah Tu; Evelyn Tan; Eric T. Sun; Kay Lin Goh; Wai Chung Ong; Chee Pang Ng; Kee Chuan Goh; Zahid Bonday

The Aurora family of serine/threonine kinases are mitotic regulators involved in centrosome duplication, formation of the bipolar mitotic spindle and the alignment of the chromosomes along the spindle. These proteins are frequently overexpressed in tumor cells as compared to normal cells and are therefore potential therapeutic oncology targets. An Aurora A high throughput screen revealed a promising sub-micromolar indazole-benzimidazole lead. Modification of the benzimidazole portion of the lead to a C2 linker with a phenyl ring was proposed to achieve novelty. Docking revealed that a conjugated linker was optimal and the resulting compounds were equipotent with the lead. Further structure-guided optimization of substituents on the 5 & 6 position of the indazole led to single digit nanomolar potency. The homology between the Aurora A & Aurora B kinase domains is 71% but their binding sites only differ at residues 212 & 217 (Aurora A numbering). However interactions with only the latter residue may be used for obtaining selectivity. An analysis of published Aurora A and Aurora B X-ray structures reveals subtle differences in the shape of the binding sites. This was exploited by introduction of appropriately sized substituents in the 4 & 6 position of the indazole leading to Aurora B selective inhibitors. Finally we calculate the conformational energy penalty of the putative bioactive conformation of our inhibitors and show that this property correlates well with the Aurora A binding affinity.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and evaluation of alkenyl indazoles as selective Aurora kinase inhibitors.

Stéphanie Blanchard; Anthony D. William; Angeline C.-H. Lee; Anders Poulsen; Ee Ling Teo; Weiping Deng; Noah Tu; Evelyn Tan; Kay Lin Goh; Wai Chung Ong; Chee Pang Ng; Kee Chuan Goh; Zahid Bonday; Eric T. Sun

A series of alkenyl indazoles were synthesized and evaluated in Aurora kinase enzyme assays. Several promising leads were optimized for selectivity towards Aurora B. Excellent binding affinity and good selectivity were achieved with optimized compounds in isolated Aurora subfamily assays.


Cancer Research | 2017

Abstract 137: FT-1518, a new generation selective and potent mTORC1 and mTORC2 inhibitor: anin vitroandin vivoprofile

Alain C. Mita; Monica M. Mita; Anthony D. William; Khalid Pasha; Chandra Siddamadappa; Kevin Zikaras; Felix T. Garzon

Mammalian target of rapamycin (mTOR) is a clinically validated target in the treatment of cancer. mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2 which regulate cell growth, metabolism, proliferation, and survival. Rapamycin analogues target only the mTORC1 complex but do not affect the mTORC2 complex, which is an important driver for cancer cell growth and survival. The new generation of “Selective” mTOR inhibitors, blocking both mTORC1 and mTORC2 signaling might increase the efficacy and safety while expanding the therapeutic potential of these anticancer agents. Herein we describe FT-1518, a low nanomolar potent, kinase and PI3K sub family selective mTOR inhibitor. FT-1518 not only exhibited high oral bioavailability in preclinical species but has demonstrated excellent microsomal stability with no inhibitory activity towards undesired CYPs. FT-1518 showed high sustained tumor exposure and target Inhibition in a single oral dose xenograft model. FT-1518 depicted very good growth inhibitory activity across a large panel of hematologic and solid tumor cell lines with most activities falling into low nanomolar range. mTOR kinase inhibition in cells, by FT-1518, resulted in more potent inhibition of the mTOR pathway biomarkers (mTORC 1 & 2 biomarkers [pAkt(S473) and pS6(S240/244) or p70 S6K), no inhibition of PI3K biomarker [pAkt(T308)], and improved anti-proliferative activity as compared with rapamycin. FT-1518 exhibited dose-dependent and higher tumor growth inhibition (TGI) in multiple solid tumor xenografts compared with rapalogs and is poised to enter the clinic with a favorable toxicology profile. Citation Format: Alain C. Mita, Monica M. Mita, Anthony D. William, Khalid Pasha, Chandra Siddamadappa, Kevin Zikaras, Felix T. Garzon. FT-1518, a new generation selective and potent mTORC1 and mTORC2 inhibitor: an in vitro and in vivo profile [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 137. doi:10.1158/1538-7445.AM2017-137

Collaboration


Dive into the Anthony D. William's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric T. Sun

Singapore Science Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian W. Dymock

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge