Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony E. Akpan is active.

Publication


Featured researches published by Anthony E. Akpan.


Journal of The Geological Society of India | 2016

Assessment of Textural Variational Pattern and Electrical Conduction of Economic and Accessible Quaternary Hydrolithofacies via Geoelectric and Laboratory Methods in SE Nigeria: A Case Study of Select Locations in Akwa Ibom State

Nyakno J. George; Anthony E. Akpan; Aniekan M. Ekanem

Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.


Arabian Journal of Geosciences | 2016

Prediction of geohydraulic pore pressure gradient differentials for hydrodynamic assessment of hydrogeological units using geophysical and laboratory techniques: a case study of the coastal sector of Akwa Ibom State, Southern Nigeria

Nyakno J. George; Anthony E. Akpan; Udoh F. Evans

We used borehole-constrained geophysical measurements and laboratory analyses of water samples and hydrogeological unit samples to estimate the basic petrophysical parameters required in the Kozeny-Carman-Bear’s equation. This led to the estimation of hydraulic conductivity, permeability and tortuosity. The evaluation of hydraulic pressure gradient differential and the hydraulic pressure differential was possible through Darcy’s law. Our main objective was to assess the effect of hydraulic pressure gradient differential and that of the hydraulic pressure differential on the hydrodynamic coefficients of economically hydrogeologic units of the study area. The specific constants of water such as density, dynamic viscosity and acceleration due to gravity were all employed in estimating some of the parameters as required in the empirical relations used. Graphical relations were used to predict the generic behaviour between permeability and its dependence, and hydraulic pressure gradient and hydraulic pressure differentials respectively. The results of our analyses show that in arenaceous hydrogeologic units like sands characterised by interconnected/communicating pores, hydraulic pressure differential will be high as the thickness of the saturated unit increases—the precondition for high hydrodynamic activity in the saturated medium. Again, in argillaceous materials, the hydraulic pressure gradient differential is high as it is caused by poor geofluid thickness penetration due to little or no communication between pores. This reduces the hydrodynamic coefficients like porosity and permeability in such hydrogeologic units. The observation of these hydraulic energy parameters in hydrogeologic units could be the physical basis for predicting groundwater flow and a guide to designing geofluid flow modelling programmes in saturated subsurface.


Applied Water Science | 2017

Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria

Ebong D. Ebong; Anthony E. Akpan; Chimezie N. Emeka; Job G. Urang

The electrical resistivity technique which involved the Schlumberger depth sounding method and geochemical analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, modeled, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The geochemical analysis of groundwater samples revealed dominant calcium–magnesium–carbonate–bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.


Journal of Earth System Science | 2016

Approximate relationship between frequency-dependent skin depth resolved from geoelectromagnetic pedotransfer function and depth of investigation resolved from geoelectrical measurements: A case study of coastal formation, southern Nigeria

Nyakno J. George; Daniel N. Obiora; Aniekan M. Ekanem; Anthony E. Akpan

The task involved in the interpretation of Vertical Electrical Sounding (VES) data is how to get unique results in the absence/limited number of borehole information, which is usually limited to information on the spot. Geological and geochemical mapping of electrical properties are usually limited to direct observations on the surface and therefore, conclusions and extrapolations that can be drawn about the system electrical characteristics and possible underlying structures may be masked as geology changes with positions. The electrical resistivity study pedotransfer functions (PTFs) have been linked with the electromagnetic (EM) resolved PTFs at chosen frequencies of skin/penetration depth corresponding to the VES resolved investigation depth in order to determine the local geological attributes of hydrogeological repository in the coastal formation dominated with fine sand. The illustrative application of effective skin depth depicts that effective skin depth has direct relation with the EM response of the local source over the layered earth and thus, can be linked to the direct current earth response functions as an aid for estimating the optimum depth and electrical parameters through comparative analysis. Though the VES and EM resolved depths of investigation at appropriate effective and theoretical frequencies have wide gaps, diagnostic relations characterising the subsurface depth of interest have been established. The determining factors of skin effect have been found to include frequency/period, resistivity/conductivity, absorption/attenuation coefficient and energy loss factor. The novel diagnostic relations and their corresponding constants between 1-D resistivity data and EM skin depth are robust PTFs necessary for checking the accuracy associated with the non-unique interpretations that characterise the 1-D resistivity data, mostly when lithostratigraphic data are not available.


NRIAG Journal of Astronomy and Geophysics | 2017

Unusual ionospheric variations before the strong Auckland Islands, New Zealand earthquake of 30th September, 2007

Jewel I. Ibanga; Anthony E. Akpan; Nyakno J. George; Aniekan M. Ekanem; A.M. George

Abstract Using the IAP experiment on board, the DEMETER and TEC from GPS data, unusual ionospheric variations have been observed some days before the 7.4 magnitude New Zealand earthquake. Both sets of data recorded perturbations 10 days before the earthquake at about the same time. The total ion density per centimeter cube (cm−3), recorded a variation of 6.94 while the differential total electron content (DTEC) in total electron content unit 1016 electron per metre square gave a value of 2.93TECU. The observed anomalies were screened for false alarm using the geomagnetic indices of Kernnifzer digit (Kp) and disturbance storm time (Dst.) It was however seen that the state of the ionosphere was geomagnetically quiet during this period; hence the observed variations were seismogenic.


NRIAG Journal of Astronomy and Geophysics | 2017

Assessment of spatial distrilbution of porosity and aquifer geohydraulic parameters in parts of the Tertiary – Quaternary hydrogeoresource of south-eastern Nigeria

Nyakno J. George; Anthony E. Akpan; F.S. Akpan

Abstract An integrated attempt exploring information deduced from extensive surface resistivity study in three Local Government Areas of Akwa Ibom State, Nigeria and data from hydrogeological sources obtained from water boreholes have been explored to economically estimate porosity and coefficient of permeability/hydraulic conductivity in parts of the clastic Tertiary – Quaternary sediments of the Niger Delta region. Generally, these parameters are predominantly estimated from empirical analysis of core samples and pumping test data generated from boreholes in the laboratory. However, this analysis is not only costly and time consuming, but also limited in areal coverage. The chosen technique employs surface resistivity data, core samples and pumping test data in order to estimate porosity and aquifer hydraulic parameters (transverse resistance, hydraulic conductivity and transmissivity). In correlating the two sets of results, Porosity and hydraulic conductivity were observed to be more elevated near the riverbanks. Empirical models utilising Archie’s, Waxman-Smits and Kozeny-Carman Bear relations were employed characterising the formation parameters with wonderfully deduced good fits. The effect of surface conduction occasioned by clay usually disregarded or ignored in Archie’s model was estimated to be 2.58 × 10−5 Siemens. This conductance can be used as a corrective factor to the conduction values obtained from Archie’s equation. Interpretation aided measures such as graphs, mathematical models and maps which geared towards realistic conclusions and interrelationship between the porosity and other aquifer parameters were generated. The values of the hydraulic conductivity estimated from Waxman-Smits model was approximately 9.6 × 10−5m/s everywhere. This revelation indicates that there is no pronounced change in the quality of the saturating fluid and the geological formations that serve as aquifers even though the porosities were varying. The deciphered parameter relations can be used to estimate geohydraulic parameters in other locations with little or no borehole data.


Environmental Earth Sciences | 2013

Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria

Anthony E. Akpan; A. N. Ugbaja; N. J. George


Journal of African Earth Sciences | 2014

Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements

Ebong D. Ebong; Anthony E. Akpan; Anthony A. Onwuegbuche


Environmental Earth Sciences | 2015

Assessment of the state of soils, shallow sediments and groundwater salinity in Abi, Cross River State, Nigeria

Anthony E. Akpan; Ebong D. Ebong; Stephen E. Ekwok


Journal of African Earth Sciences | 2015

Geophysical investigation of Obot Ekpo Landslide site, Cross River State, Nigeria

Anthony E. Akpan; Abidemi O. Ilori; Nse U. Essien

Collaboration


Dive into the Anthony E. Akpan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nyakno J. George

Akwa Ibom State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aniekan M. Ekanem

Akwa Ibom State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge