Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony E. Glenn is active.

Publication


Featured researches published by Anthony E. Glenn.


PLOS Genetics | 2013

Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci

Christopher L. Schardl; Carolyn A. Young; Uljana Hesse; Stefan G. Amyotte; Kalina Andreeva; Patrick J. Calie; Damien J. Fleetwood; David Haws; Neil Moore; Birgitt Oeser; Daniel G. Panaccione; Kathryn Schweri; Christine R. Voisey; Mark L. Farman; Jerzy W. Jaromczyk; Bruce A. Roe; Donal M. O'Sullivan; Barry Scott; Paul Tudzynski; Zhiqiang An; Elissaveta G. Arnaoudova; Charles T. Bullock; Nikki D. Charlton; Li Chen; Murray P. Cox; Randy D. Dinkins; Simona Florea; Anthony E. Glenn; Anna Gordon; Ulrich Güldener

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Fungal Genetics and Biology | 2009

A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex

Kerry O'Donnell; Cécile Gueidan; Stacy Sink; Peter R. Johnston; Pedro W. Crous; Anthony E. Glenn; Ron Riley; Nicholas C. Zitomer; Patrick Colyer; Cees Waalwijk; Theo van der Lee; Antonio Moretti; Seogchan Kang; Hye Seon Kim; David M. Geiser; Jean H. Juba; R. P. Baayen; M. G. Cromey; Sean Bithell; Deanna A. Sutton; Kerstin Skovgaard; Randy C. Ploetz; H. Corby Kistler; Monica L. Elliott; Mike Davis; Brice A. J. Sarver

We constructed a two-locus database, comprising partial translation elongation factor (EF-1alpha) gene sequences and nearly full-length sequences of the nuclear ribosomal intergenic spacer region (IGS rDNA) for 850 isolates spanning the phylogenetic breadth of the Fusarium oxysporum species complex (FOSC). Of the 850 isolates typed, 101 EF-1alpha, 203 IGS rDNA, and 256 two-locus sequence types (STs) were differentiated. Analysis of the combined dataset suggests that two-thirds of the STs might be associated with a single host plant. This analysis also revealed that the 26 STs associated with human mycoses were genetically diverse, including several which appear to be nosocomial in origin. A congruence analysis, comparing partial EF-1alpha and IGS rDNA bootstrap consensus, identified a significant number of conflicting relationships dispersed throughout the bipartitions, suggesting that some of the IGS rDNA sequences may be non-orthologous. We also evaluated enniatin, fumonisin and moniliformin mycotoxin production in vitro within a phylogenetic framework.


Molecular Plant-microbe Interactions | 2008

Transformation-Mediated Complementation of a FUM Gene Cluster Deletion in Fusarium verticillioides Restores both Fumonisin Production and Pathogenicity on Maize Seedlings

Anthony E. Glenn; Nicholas C. Zitomer; Anne Marie Zimeri; Lonnie D. Williams; Ronald T. Riley; Robert H. Proctor

The filamentous ascomycete Fusarium verticillioides is a pathogen of maize and produces the fumonisin mycotoxins. However, a distinct population of F. verticillioides is pathogenic on banana and does not produce fumonisins. Fumonisin-producing strains from maize cause leaf lesions, developmental abnormalities, stunting, and sometimes death of maize seedlings, whereas fumonisin-nonproducing banana strains do not. A Southern analysis of banana strains did not detect genes in the fumonisin biosynthetic gene (FUM) cluster but did detect genes flanking the cluster. Nucleotide sequence analysis of the genomic region carrying the flanking genes revealed that the FUM cluster was absent in banana strains except for portions of FUM21 and FUM19, which are the terminal genes at each end of the cluster. Polymerase chain reaction analysis confirmed the absence of the cluster in all banana strains examined. Cotransformation of a banana strain with two overlapping cosmids, which together contain the entire FUM cluster, yielded fumonisin-producing transformants that were pathogenic on maize seedlings. Conversely, maize strains that possess the FUM cluster but do not produce fumonisins because of mutations in FUM1, a polyketide synthase gene, were not pathogenic on maize seedlings. Together, the data indicate that fumonisin production may have been lost by deletion of the FUM cluster in the banana population of F. verticillioides but that fumonisin production could be restored by molecular genetic complementation. The results also indicate that fumonisin production by F. verticillioides is required for development of foliar disease symptoms on maize seedlings.


Phytopathology | 2013

One fungus, one name

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Phytopathology | 2013

One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use.

David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau

In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.


Toxin Reviews | 2008

FUSARIUM VERTICILLIOIDES: MANAGING THE ENDOPHYTIC ASSOCIATION WITH MAIZE FOR REDUCED FUMONISINS ACCUMULATION

Charles W. Bacon; Anthony E. Glenn; I. E. Yates

Fusarium verticillioides is a very important genus from the aspects of plant disease, cereal production, and food safety. A major concern of this species is its mycotoxins, which are harmful to humans and animals ingesting Fusarium-contaminated food or feed products. The fungus exists as a symptomless intercellular endophyte in both field and sweet maize, but its role during the symptomless state of infection is ambiguous. Most strains produce the fumonisin in large quantities during the preharvest and postharvest periods of maize production, even during the symptomless state. The dual nature of F. verticillioides as both pathogen and a symptomless endophyte indicates a complex relationship with maize. Interactive biotic factors such as plant genetics, along with abiotic factors, may alter the required balanced relationships, resulting in a weakened plant and changing the relationship into a disease, during which mycotoxins are produced. Consequently, the development of appropriate control measures for the virulent state is expected to be difficult. Two biocontrol agents and approaches are also reviewed, along that offering some pre- and postharvest biological control measures designed to reduce maize contamination by F. verticillioides and the fumonisin mycotoxins.


Molecular Plant-microbe Interactions | 2002

Fdb1 and Fdb2, Fusarium verticillioides Loci Necessary for Detoxification of Preformed Antimicrobials from Corn

Anthony E. Glenn; S. E. Gold; C. W. Bacon

Fusarium verticillioides is a fungus of significant economic importance because of its deleterious effects on plant and animal health and on the quality of their products. Corn (Zea mays) is the primary host for F. verticillioides, and we have investigated the impact of the plants antimicrobial compounds (DIMBOA, DIBOA, MBOA, and BOA) on fungal virulence and systemic colonization. F. verticillioides is able to metabolize these antimicrobials, and genetic analyses indicated two loci, Fdb1 and Fdb2, were involved in detoxification. Mutation at either locus caused sensitivity and no detoxification. In vitro physiological complementation assays resulted in detoxification of BOA and suggested that an unknown intermediate compound was produced. Production of the intermediate compound involved Fdbl, and a lesion in fdb2 preventing complete metabolism of BOA resulted in transformation of the intermediate into an unidentified metabolite. Based on genetic and physiological data, a branched detoxification pathway is proposed. Use of genetically characterized detoxifying and nondetoxifying strains indicated that detoxification of the corn antimicrobials was not a major virulence factor, since detoxification was not necessary for development of severe seedling blight or for infection and endophytic colonization of seedlings. Production of the antimicrobials does not appear to be a highly effective resistance mechanism against F. verticillioides.


Evolutionary Applications | 2010

Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes.

Megan Saunders; Anthony E. Glenn; Linda M. Kohn

All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair‐wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine‐tune crop management strategies.


Phytochemistry | 2008

Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae.

Martha L. Macías-Rubalcava; Blanca E. Hernández-Bautista; Manuel Jiménez-Estrada; María C. González; Anthony E. Glenn; Richard T. Hanlin; Simón Hernández-Ortega; Aurora Saucedo-García; Jordi M. Muria-González; Ana Luisa Anaya

Chemical investigation of the mycelium of Edenia gomezpompae, a newly discovered endophytic fungus isolated from the leaves of Callicarpa acuminata (Verbenaceae) collected from the ecological reserve El Eden, Quintana Roo, Mexico, resulted in the isolation of four naphthoquinone spiroketals, including three new compounds and palmarumycin CP2 (4). We elucidated the structures of the metabolites by extensive NMR spectroscopy studies, including DEPT, COSY, NOESY, HSQC, HMBC, and chiroptical methods. The trivial names proposed for these compounds are preussomerin EG1 (1), preussomerin EG2 (2) and preussomerin EG3 (3). In addition, the X-ray data for 4 were obtained. The bioactivity of the mycelial organic extracts and the pure compounds was tested against three endophytic fungi (Colletotrichum sp., Phomopsis sp., and Guignardia manguifera) isolated from the same plant species (C. acuminata, Verbenaceae) and against four economically important phytopathogenic microorganisms (two fungoid oomycetes, Phythophtora capsici and Phythophtora parasitica, and the fungi Fusarium oxysporum and Alternaria solani). Spiroketals 1-3 displayed significant growth inhibition against all the phytopathogens. IC50 values for the four phytopathogens were from 20 to 170 microg/ml. Palmarumycin CP2 (4) was not bioactive against any of the fungi tested. Compound 1 showed the strongest bioactivity. The acetylated derivatives of preussomerin EG1 (1), 1a and 1b, were obtained and their biological activity was tested on endophytes and phytopathogens. Preussomerin EG1 1, 1a and 1b exhibited significant bioactivity against all microorganisms tested with the exception of Alternaria solani. This is the first report of allelochemicals with antifungal activity from the newly discovered endophytic fungus E. gomezpompae.


Phytopathology | 2009

Toxicity of Endophyte-Infected Tall Fescue Alkaloids and Grass Metabolites on Pratylenchus scribneri

A. A. Bacetty; M. E. Snook; Anthony E. Glenn; J. P. Noe; Nicholas S. Hill; A. Culbreath; P. Timper; P. Nagabhyru; Charles W. Bacon

ABSTRACT Neotyphodium coenophialum, an endophytic fungus associated with tall fescue grass, enhances host fitness and imparts pest resistance. This symbiotum is implicated in the reduction of stresses, including plant-parasitic nematodes. To substantiate this implication, toxicological effects of root extracts, polyphenolic fraction, ergot, and loline alkaloids from endophyte-infected tall fescue were investigated using Pratylenchus scribneri, a nematode pest of tall fescue. In vitro bioassays and greenhouse studies were used as tests for effects of root fractions and compounds on motility and mortality of this lesion nematode. Greenhouse studies revealed that endophyte-infected tall fescue grasses are essentially nonhosts to P. scribneri, with root populations averaging 3 to 17 nematodes/pot, compared with 4,866 and 8,450 nematodes/pot for noninfected grasses. The in vitro assay indicated that root extracts from infected tall fescues were nematistatic. Polyphenols identified in extracts included chlorogenic acid, 3,5-dicaffeoylquinic acids, caffeic acid, and two unidentified compounds, but these were not correlated with endophyte status, qualitatively or quantitatively. Tests of several ergot alkaloids revealed that ergovaline and alpha-ergocryptine were nematicidal at 5 and 50 microg/ml, respectively, while ergocornine and ergonovine were nematistatic at most concentrations. Loline (N-formylloline), the pyrrolizidine alkaloid tested, was nematicidal (50 to 200 microg/ml). The ecological benefits of the metabolites tested here should assist in defining their role in deterring this nematode species while offering some probable mechanisms of action against plant-parasitic nematodes in general.

Collaboration


Dive into the Anthony E. Glenn's collaboration.

Top Co-Authors

Avatar

Charles W. Bacon

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

María C. González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ronald T. Riley

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Rachel Mata

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas C. Zitomer

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Ana Luisa Anaya

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Martín González-Andrade

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Dorothy M. Hinton

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge