Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony G. Garza is active.

Publication


Featured researches published by Anthony G. Garza.


Journal of Bacteriology | 2007

Regulation of dev, an Operon That Includes Genes Essential for Myxococcus xanthus Development and CRISPR-Associated Genes and Repeats

Poorna Viswanathan; Kimberly Murphy; Bryan Julien; Anthony G. Garza; Lee Kroos

Expression of dev genes is important for triggering spore differentiation inside Myxococcus xanthus fruiting bodies. DNA sequence analysis suggested that dev and cas (CRISPR-associated) genes are cotranscribed at the dev locus, which is adjacent to CRISPR (clustered regularly interspaced short palindromic repeats). Analysis of RNA from developing M. xanthus confirmed that dev and cas genes are cotranscribed with a short upstream gene and at least two repeats of the downstream CRISPR, forming the dev operon. The operon is subject to strong, negative autoregulation during development by DevS. The dev promoter was identified. Its -35 and -10 regions resemble those recognized by M. xanthus sigma(A) RNA polymerase, the homolog of Escherichia coli sigma(70), but the spacer may be too long (20 bp); there is very little expression during growth. Induction during development relies on at least two positive regulatory elements located in the coding region of the next gene upstream. At least two positive regulatory elements and one negative element lie downstream of the dev promoter, such that the region controlling dev expression spans more than 1 kb. The results of testing different fragments for dev promoter activity in wild-type and devS mutant backgrounds strongly suggest that upstream and downstream regulatory elements interact functionally. Strikingly, the 37-bp sequence between the two CRISPR repeats that, minimally, are cotranscribed with dev and cas genes exactly matches a sequence in the bacteriophage Mx8 intP gene, which encodes a form of the integrase needed for lysogenization of M. xanthus.


Journal of Bacteriology | 2005

The relA Homolog of Mycobacterium smegmatis Affects Cell Appearance, Viability, and Gene Expression

John L. Dahl; Kriti Arora; Helena I. Boshoff; Danelle C. Whiteford; Sophia A. Pacheco; Olaus J. Walsh; Dalia Lau-Bonilla; William B. Davis; Anthony G. Garza

The modification of metabolic pathways to allow for a dormant lifestyle appears to be an important feature for the survival of pathogenic bacteria within their host. One regulatory mechanism for persistent Mycobacterium tuberculosis infections is the stringent response. In this study, we analyze the stringent response of a nonpathogenic, saprophytic mycobacterial species, Mycobacterium smegmatis. The use of M. smegmatis as a tool for studying the mycobacterial stringent response was demonstrated by measuring the expression of two M. tuberculosis genes, hspX and eis, in M. smegmatis in the presence and absence of rel(Msm). The stringent response plays a role in M. smegmatis cellular and colony formation that is suggestive of changes in the bacterial cell wall structure.


PLOS ONE | 2013

Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli.

David Cole Stevens; Kyle Conway; Nelson Pearce; Luis Roberto Villegas-Peñaranda; Anthony G. Garza; Christopher N. Boddy

Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products.


Journal of Bacteriology | 2006

Nla18, a Key Regulatory Protein Required for Normal Growth and Development of Myxococcus xanthus

Michelle E. Diodati; Faisury Ossa; Nora B. Caberoy; Ivy R. Jose; Wataru Hiraiwa; Michele M. Igo; Anthony G. Garza

NtrC-like activators regulate the transcription of a wide variety of adaptive genes in bacteria. Previously, we demonstrated that a mutation in the ntrC-like activator gene nla18 causes defects in fruiting body development in Myxococcus xanthus. In this report, we describe the effect that nla18 inactivation has on gene expression patterns during development and vegetative growth. Gene expression in nla18 mutant cells is altered in the early stages of fruiting body development. Furthermore, nla18 mutant cells are defective for two of the earliest events in development, production of the intracellular starvation signal ppGpp and production of A-signal. Taken together, these results indicate that the developmental program in nla18 mutant cells goes awry very early. Inactivation of nla18 also causes a dramatic decrease in the vegetative growth rate of M. xanthus cells. DNA microarray analysis revealed that the vegetative expression patterns of more than 700 genes are altered in nla18 mutant cells. Genes coding for putative membrane and membrane-associated proteins are among the largest classes of genes whose expression is altered by nla18 inactivation. This result is supported by our findings that the profiles of membrane proteins isolated from vegetative nla18 mutant and wild-type cells are noticeably different. In addition to genes that code for putative membrane proteins, nla18 inactivation affects the expression of many genes that are likely to be important for protein synthesis and gene regulation. Our data are consistent with a model in which Nla18 controls vegetative growth and development by activating the expression of genes involved in gene regulation, translation, and membrane structure.


Proceedings of the National Academy of Sciences of the United States of America | 2011

A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program

Krista M. Giglio; Nora B. Caberoy; Garret Suen; Dale Kaiser; Anthony G. Garza

The signal transduction networks that initiate multicellular development in bacteria remain largely undefined. Here, we report that Myxococcus xanthus regulates entry into its multicellular developmental program using a novel strategy: a cascade of transcriptional activators known as enhancer binding proteins (EBPs). The EBPs in the cascade function in sequential stages of early development, and several lines of evidence indicate that the cascade is propagated when EBPs that function at one stage of development directly regulate transcription of an EBP gene important for the next developmental stage. We also show that the regulatory cascade is designed in a novel way that extensively expands on the typical use of EBPs: Instead of using only one EBP to regulate a particular gene or group of genes, which is the norm in other bacterial systems, the cascade uses multiple EBPs to regulate EBP genes that are positioned at key transition points in early development. Based on the locations of the putative EBP promoter binding sites, several different mechanisms of EBP coregulation are possible, including the formation of coregulating EBP transcriptional complexes. We propose that M. xanthus uses an EBP coregulation strategy to make expression of EBP genes that modulate stage-stage transitions responsive to multiple signal transduction pathways, which provide information that is important for a coordinated decision to advance the developmental process.


Nature Biotechnology | 2005

Functional genome annotation through phylogenomic mapping

Balaji S. Srinivasan; Nora B. Caberoy; Garret Suen; Rion G. Taylor; Radhika Shah; Farah K. Tengra; Barry S. Goldman; Anthony G. Garza; Roy D. Welch

Accurate determination of functional interactions among proteins at the genome level remains a challenge for genomic research. Here we introduce a genome-scale approach to functional protein annotation—phylogenomic mapping—that requires only sequence data, can be applied equally well to both finished and unfinished genomes, and can be extended beyond single genomes to annotate multiple genomes simultaneously. We have developed and applied it to more than 200 sequenced bacterial genomes. Proteins with similar evolutionary histories were grouped together, placed on a three dimensional map and visualized as a topographical landscape. The resulting phylogenomic maps display thousands of proteins clustered in mountains on the basis of coinheritance, a strong indicator of shared function. In addition to systematic computational validation, we have experimentally confirmed the ability of phylogenomic maps to predict both mutant phenotype and gene function in the delta proteobacterium Myxococcus xanthus.


Journal of Bacteriology | 2007

Identification of Major Sporulation Proteins of Myxococcus xanthus Using a Proteomic Approach

John L. Dahl; Farah K. Tengra; David Dutton; Jinyuan Yan; Tracy M. Andacht; Lia Coyne; Veronica Windell; Anthony G. Garza

Myxococcus xanthus is a soil-dwelling, gram-negative bacterium that during nutrient deprivation is capable of undergoing morphogenesis from a vegetative rod to a spherical, stress-resistant spore inside a domed-shaped, multicellular fruiting body. To identify proteins required for building stress-resistant M. xanthus spores, we compared the proteome of liquid-grown vegetative cells with the proteome of mature fruiting body spores. Two proteins, protein S and protein S1, were differentially expressed in spores, as has been reported previously. In addition, we identified three previously uncharacterized proteins that are differentially expressed in spores and that exhibit no homology to known proteins. The genes encoding these three novel major spore proteins (mspA, mspB, and mspC) were inactivated by insertion mutagenesis, and the development of the resulting mutant strains was characterized. All three mutants were capable of aggregating, but for two of the strains the resulting fruiting bodies remained flattened mounds of cells. The most pronounced structural defect of spores produced by all three mutants was an altered cortex layer. We found that mspA and mspB mutant spores were more sensitive specifically to heat and sodium dodecyl sulfate than wild-type spores, while mspC mutant spores were more sensitive to all stress treatments examined. Hence, the products of mspA, mspB, and mspC play significant roles in morphogenesis of M. xanthus spores and in the ability of spores to survive environmental stress.


Journal of Bacteriology | 2007

The Myxococcus xanthus Nla4 Protein Is Important for Expression of Stringent Response-Associated Genes, ppGpp Accumulation, and Fruiting Body Development

Faisury Ossa; Michelle E. Diodati; Nora B. Caberoy; Krista M. Giglio; Mick D. Edmonds; Anthony G. Garza

Changes in gene expression are important for the landmark morphological events that occur during Myxococcus xanthus fruiting body development. Enhancer binding proteins (EBPs), which are transcriptional activators, play prominent roles in the coordinated expression of developmental genes. A mutation in the EBP gene nla4 affects the timing of fruiting body formation, the morphology of mature fruiting bodies, and the efficiency of sporulation. In this study, we showed that the nla4 mutant accumulates relatively low levels of the stringent nucleotide ppGpp. We also found that the nla4 mutant is defective for early developmental events and for vegetative growth, phenotypes that are consistent with a deficiency in ppGpp accumulation. Further studies revealed that nla4 cells produce relatively low levels of GTP, a precursor of RelA-dependent synthesis of (p)ppGpp. In addition, the normal expression patterns of all stringent response-associated genes tested, including the M. xanthus ppGpp synthetase gene relA, are altered in nla4 mutant cells. These findings indicate that Nla4 is part of regulatory pathway that is important for mounting a stringent response and for initiating fruiting body development.


Journal of Bacteriology | 2012

The Nla28S/Nla28 Two-Component Signal Transduction System Regulates Sporulation in Myxococcus xanthus

Zaara Sarwar; Anthony G. Garza

The response regulator Nla28 is a key component in a cascade of transcriptional activators that modulates expression of many important developmental genes in Myxococcus xanthus. In this study, we identified and characterized Nla28S, a histidine kinase that modulates the activity of this important regulator of M. xanthus developmental genes. We show that the putative cytoplasmic domain of Nla28S has the in vitro biochemical properties of a histidine kinase protein: it hydrolyzes ATP and undergoes an ATP-dependent autophosphorylation that is acid labile and base stable. We also show that the putative cytoplasmic domain of Nla28S transfers a phosphoryl group to Nla28 in vitro, that the phosphotransfer is specific, and that a substitution in the predicted site of Nla28 phosphorylation (aspartate 53) abolishes the phosphotransfer reaction. In phenotypic studies, we found that a mutation in nla28S produces a developmental phenotype similar to, but weaker than, that produced by a mutation in nla28; both mutations primarily affect sporulation. Together, these data indicate that Nla28S is the in vivo histidine kinase partner of Nla28 and that the primary function of the Nla28S/Nla28 two-component signal transduction system is to regulate sporulation genes. The results of genetic studies suggest that phosphorylation of Nla28S is important for the in vivo sporulation function of the Nla28S/Nla28 two-component system. In addition, the quorum signal known as A-signal is important for full developmental expression of the nla28S-nla28 operon, suggesting that quorum signaling regulates the availability of the Nla28S/Nla28 signal transduction circuit in developing cells.


Journal of Bacteriology | 2015

The Enhancer Binding Protein Nla6 Regulates Developmental Genes That Are Important for Myxococcus xanthus Sporulation

Krista M. Giglio; Chengjun Zhu; Courtney Klunder; Shelley Kummer; Anthony G. Garza

UNLABELLED In the bacterium Myxococcus xanthus, starvation triggers the formation of multicellular fruiting bodies containing thousands of stress-resistant spores. Recent work showed that fruiting body development is regulated by a cascade of transcriptional activators called enhancer binding proteins (EBPs). The EBP Nla6 is a key component of this cascade; it regulates the promoters of other EBP genes, including a downstream-functioning EBP gene that is crucial for sporulation. In recent expression studies, hundreds of Nla6-dependent genes were identified, suggesting that the EBP gene targets of Nla6 may be part of a much larger regulon. The goal of this study was to identify and characterize genes that belong to the Nla6 regulon. Accordingly, a direct repeat [consensus, C(C/A)ACGNNGNC] binding site for Nla6 was identified using in vitro and in vivo mutational analyses, and the sequence was subsequently used to find 40 potential developmental promoter (88 gene) targets. We showed that Nla6 binds to the promoter region of four new targets (asgE, exo, MXAN2688, and MXAN3259) in vitro and that Nla6 is important for their normal expression in vivo. Phenotypic studies indicate that all of the experimentally confirmed targets of Nla6 are primarily involved in sporulation. These targets include genes involved in transcriptional regulation, cell-cell signal production, and spore differentiation and maturation. Although sporulation occurs late in development, all of the developmental loci analyzed here show an Nla6-dependent burst in expression soon after starvation is induced. This finding suggests that Nla6 starts preparing cells for sporulation very early in the developmental process. IMPORTANCE Bacterial development yields a remarkable array of complex multicellular forms. One such form, which is commonly found in nature, is a surface-associated aggregate of cells known as a biofilm. Mature biofilms are structurally complex and contain cells that are highly resistant to antibacterial agents. When starving, the model bacterium Myxococcus xanthus forms a biofilm containing a thin mat of cells and multicellular structures that house a highly resistant cell type called a myxospore. Here, we identify the promoter binding site of the transcriptional activator Nla6, identify genes in the Nla6 regulon, and show that several of the genes in the Nla6 regulon are important for production of stress-resistant spores in starvation-induced M. xanthus biofilms.

Collaboration


Dive into the Anthony G. Garza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garret Suen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John L. Dahl

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Dutton

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge