Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony G. Hay is active.

Publication


Featured researches published by Anthony G. Hay.


Bioresource Technology | 2011

Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution

Xincai Chen; Guangcun Chen; Linggui Chen; Yingxu Chen; Johannes Lehmann; Murray B. McBride; Anthony G. Hay

Biochars produced by pyrolysis of hardwood at 450 °C (HW450) and corn straw at 600 °C (CS600) were characterized and investigated as adsorbents for the removal of Cu(II) and Zn(II) from aqueous solution. The adsorption data were well described by a Langmuir isotherm, with maximum Cu(II) and Zn(II) adsorption capacities of 12.52 and 11.0 mg/g for CS600, 6.79 and 4.54 mg/g for HW450, respectively. Thermodynamic analysis suggested that the adsorption was an endothermic process and did not occur spontaneously. Although Cu(II) adsorption was only marginally affected by Zn(II), Cu(II) competed with Zn(II) for binding sites at Cu(II) and Zn(II) concentrations ≥ 1.0mM. Results from this study indicated that plant-residue or agricultural waste derived biochar can act as effective surface sorbent, but their ability to treat mixed waste streams needs to be carefully evaluated on an individual basis.


Cell Host & Microbe | 2013

Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut

Tyler C. Cullender; Benoit Chassaing; Anders Janzon; Krithika Kumar; Catherine E. Muller; Jeffrey J. Werner; Largus T. Angenent; M. Elizabeth Bell; Anthony G. Hay; Daniel A. Peterson; Jens Walter; Matam Vijay-Kumar; Andrew T. Gewirtz; Ruth E. Ley

Gut mucosal barrier breakdown and inflammation have been associated with high levels of flagellin, the principal bacterial flagellar protein. Although several gut commensals can produce flagella, flagellin levels are low in the healthy gut, suggesting the existence of control mechanisms. We find that mice lacking the flagellin receptor Toll-like receptor 5 (TLR5) exhibit a profound loss of flagellin-specific immunoglobulins (Igs) despite higher total Ig levels in the gut. Ribotyping of IgA-coated cecal microbiota showed Proteobacteria evading antibody coating in the TLR5(-/-) gut. A diversity of microbiome members overexpressed flagellar genes in the TLR5(-/-) host. Proteobacteria and Firmicutes penetrated small intestinal villi, and flagellated bacteria breached the colonic mucosal barrier. In vitro, flagellin-specific Ig inhibited bacterial motility and downregulated flagellar gene expression. Thus, innate-immunity-directed development of flagellin-specific adaptive immune responses can modulate the microbiomes production of flagella in a three-way interaction that helps to maintain mucosal barrier integrity and homeostasis.


Journal of Chemical Ecology | 2005

ISOLATION AND CHARACTERIZATION OF ALLELOPATHIC VOLATILES FROM MUGWORT (Artemisia vulgaris)

Jacob N. Barney; Anthony G. Hay; Leslie A. Weston

Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, α-pinene, and β-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.


Environmental Health Perspectives | 2011

Do Interactions Between Gut Ecology and Environmental Chemicals Contribute to Obesity and Diabetes

Suzanne M. Snedeker; Anthony G. Hay

Background: Gut microbiota are important factors in obesity and diabetes, yet little is known about their role in the toxicodynamics of environmental chemicals, including those recently found to be obesogenic and diabetogenic. Objectives: We integrated evidence that independently links gut ecology and environmental chemicals to obesity and diabetes, providing a framework for suggesting how these environmental factors may interact with these diseases, and identified future research needs. Methods: We examined studies with germ-free or antibiotic-treated laboratory animals, and human studies that evaluated how dietary influences and microbial changes affected obesity and diabetes. Strengths and weaknesses of studies evaluating how environmental chemical exposures may affect obesity and diabetes were summarized, and research gaps on how gut ecology may affect the disposition of environmental chemicals were identified. Results: Mounting evidence indicates that gut microbiota composition affects obesity and diabetes, as does exposure to environmental chemicals. The toxicology and pharmacology literature also suggests that interindividual variations in gut microbiota may affect chemical metabolism via direct activation of chemicals, depletion of metabolites needed for biotransformation, alteration of host biotransformation enzyme activities, changes in enterohepatic circulation, altered bioavailability of environmental chemicals and/or antioxidants from food, and alterations in gut motility and barrier function. Conclusions: Variations in gut microbiota are likely to affect human toxicodynamics and increase individual exposure to obesogenic and diabetogenic chemicals. Combating the global obesity and diabetes epidemics requires a multifaceted approach that should include greater emphasis on understanding and controlling the impact of interindividual gut microbe variability on the disposition of environmental chemicals in humans.


Advances in Applied Microbiology | 2009

Biodegradation of Pharmaceutical and Personal Care Products

Jeanne Kagle; Abigail W. Porter; Robert W. Murdoch; Giomar Rivera-Cancel; Anthony G. Hay

Medical treatments and personal hygiene lead to the steady release of pharmaceutical and personal care products (PPCPs) into the environment. Some of these PPCPs have been shown to have detrimental environmental effects and could potentially impact human health. Understanding the biological transformation of PPCPs is essential for accurately determining their ultimate environmental fate, conducting accurate risk assessments, and improving PPCP removal. We summarize the current literature concerning the biological transformation of PPCPs in wastewater treatment plants, the environment, and by pure cultures of bacterial isolates. Although some PPCPs, such as ibuprofen, are readily degraded under most studied conditions, others, such as carbamazepine, tend to be recalcitrant. This variation in the biodegradability of PPCPs can be attributed to structural differences, because PPCPs are classified by application, not chemical structure. The degradation pathways of octylphenol by Sphingomonas sp. strain PWE1, ibuprofen by Sphingomonas sp. strain Ibu-2, and DEET by Pseudomonas putida DTB are discussed in more detail.


Applied and Environmental Microbiology | 2000

A bioluminescent whole-cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil.

Anthony G. Hay; James F. Rice; Bruce Applegate; Nathan G. Bright; Gary S. Sayler

ABSTRACT A bioreporter was made containing atfdRPDII-luxCDABE fusion in a modified mini-Tn5 construct. When it was introduced into the chromosome of Ralstonia eutropha JMP134, the resulting strain, JMP134-32, produced a sensitive bioluminescent response to 2,4-dichlorophenoxyacetic acid (2,4-D) at concentrations of 2.0 μM to 5.0 mM. This response was linear (R2 = 0.9825) in the range of 2.0 μM to 1.1 × 102 μM. Saturation occurred at higher concentrations, with maximal bioluminescence occurring in the presence of approximately 1.2 mM 2,4-D. A sensitive response was also recorded in the presence of 2,4-dichlorophenol at concentrations below 1.1 × 102μM; however, only a limited bioluminescent response was recorded in the presence of 3-chlorobenzoic acid at concentrations below 1.0 mM. A significant bioluminescent response was also recorded when strain JMP134-32 was incubated with soils containing aged 2,4-D residues.


Applied and Environmental Microbiology | 2005

Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids.

Robert W. Murdoch; Anthony G. Hay

ABSTRACT Although ibuprofen [2-(4-isobutylphenyl)-propionic acid] is one of the most widely consumed drugs in the world, little is known regarding its degradation by environmental bacteria. Sphingomonas sp. strain Ibu-2 was isolated from a wastewater treatment plant based on its ability to use ibuprofen as a sole carbon and energy source. A slight preference toward the R enantiomer was observed, though both ibuprofen enantiomers were metabolized. A yellow color, indicative of meta-cleavage, accumulated transiently in the culture supernatant when Ibu-2 was grown on ibuprofen. When and only when 3-flurocatechol was used to poison the meta-cleavage system, isobutylcatechol was identified in the culture supernatant via gas chromatography-mass spectrometry analysis. Ibuprofen-induced washed-cell suspensions also metabolized phenylacetic acid and 2-phenylpropionic acid to catechol, while 3- and 4-tolylacetic acids and 2-(4-tolyl)-propionic acid were metabolized to the corresponding methyl catechols before ring cleavage. These data suggest that, in contrast to the widely distributed coenzyme A ligase, homogentisate, or homoprotocatechuate pathway for metabolism of phenylacetic acid and similar compounds, Ibu-2 removes the acidic side chain of ibuprofen and related compounds prior to ring cleavage.


Applied and Environmental Microbiology | 2009

Functional tomographic fluorescence imaging of pH microenvironments in microbial biofilms by use of silica nanoparticle sensors.

Gabriela Hidalgo; Andrew Burns; Erik Herz; Anthony G. Hay; Paul L. Houston; Ulrich Wiesner; Leonard W. Lion

ABSTRACT Attached bacterial communities can generate three-dimensional (3D) physicochemical gradients that create microenvironments where local conditions are substantially different from those in the surrounding solution. Given their ubiquity in nature and their impacts on issues ranging from water quality to human health, better tools for understanding biofilms and the gradients they create are needed. Here we demonstrate the use of functional tomographic imaging via confocal fluorescence microscopy of ratiometric core-shell silica nanoparticle sensors (C dot sensors) to study the morphology and temporal evolution of pH microenvironments in axenic Escherichia coli PHL628 and mixed-culture wastewater biofilms. Testing of 70-, 30-, and 10-nm-diameter sensor particles reveals a critical size for homogeneous biofilm staining, with only the 10-nm-diameter particles capable of successfully generating high-resolution maps of biofilm pH and distinct local heterogeneities. Our measurements revealed pH values that ranged from 5 to >7, confirming the heterogeneity of the pH profiles within these biofilms. pH was also analyzed following glucose addition to both suspended and attached cultures. In both cases, the pH became more acidic, likely due to glucose metabolism causing the release of tricarboxylic acid cycle acids and CO2. These studies demonstrate that the combination of 3D functional fluorescence imaging with well-designed nanoparticle sensors provides a powerful tool for in situ characterization of chemical microenvironments in complex biofilms.


FEMS Microbiology Ecology | 2003

Tracking temporal changes of bacterial community fingerprints during the initial stages of composting

Patrick D. Schloss; Anthony G. Hay; David B. Wilson; Larry P. Walker

Abstract The initial phase of composting is the most dynamic part of the process and is characterized by rapid increases in temperature, large swings in pH, and the degradation of simple organic compounds. DNA samples were taken from an active compost system to determine the microbial 16S rRNA gene sequences that were present during this phase. We observed two significant shifts in the composition of the microbial community, one between 12 and 24 h and the other between 60 and 72 h into the process using automated 16S-23S rRNA intergenic spacer amplification (ARISA). The 16S rRNA gene sequences adjoining the most common ARISA fragments at each time point were determined. We found that sequences related to lactic acid bacteria were most common during the first 60 h and Bacillus-type sequences were most common between 72 and 96 h. While the temperature increased steadily over the first 96 h, the pH dropped after 12 h and increased after 60 h correlating with the shift from Bacillus to lactic acid sequences and the later return to Bacillus-type sequences.


Applied and Environmental Microbiology | 2005

Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy.

Zhiqiang Hu; Gabriela Hidalgo; Paul L. Houston; Anthony G. Hay; Michael L. Shuler; Héctor D. Abruña; William C. Ghiorse; Leonard W. Lion

ABSTRACT The spatial distributions of zinc, a representative transition metal, and active biomass in bacterial biofilms were determined using two-photon laser scanning microscopy (2P-LSM). Application of 2P-LSM permits analysis of thicker biofilms than are amenable to observation with confocal laser scanning microscopy and also provides selective excitation of a smaller focal volume with greater depth localization. Thin Escherichia coli PHL628 biofilms were grown in a minimal mineral salts medium using pyruvate as the carbon and energy source under batch conditions, and thick biofilms were grown in Luria-Bertani medium using a continuous-flow drip system. The biofilms were visualized by 2P-LSM and shown to have heterogeneous structures with dispersed dense cell clusters, rough surfaces, and void spaces. Contrary to homogeneous biofilm model predictions that active biomass would be located predominantly in the outer regions of the biofilm and inactive or dead biomass (biomass debris) in the inner regions, significant active biomass fractions were observed at all depths in biofilms (up to 350 μm) using live/dead fluorescent stains. The active fractions were dependent on biofilm thickness and are attributed to the heterogeneous characteristics of biofilm structures. A zinc-binding fluorochrome (8-hydroxy-5-dimethylsulfoamidoquinoline) was synthesized and used to visualize the spatial location of added Zn within biofilms. Zn was distributed evenly in a thin (12 μm) biofilm but was located only at the surface of thick biofilms, penetrating less than 20 μm after 1 h of exposure. The relatively slow movement of Zn into deeper biofilm layers provides direct evidence in support of the concept that thick biofilms may confer resistance to toxic metal species by binding metals at the biofilm-bulk liquid interface, thereby retarding metal diffusion into the biofilm (G. M. Teitzel and M. R. Park, Appl. Environ. Microbiol. 69:2313-2320, 2003).

Collaboration


Dive into the Anthony G. Hay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge