Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony Hawkridge is active.

Publication


Featured researches published by Anthony Hawkridge.


American Journal of Respiratory and Critical Care Medicine | 2010

Specific T Cell Frequency and Cytokine Expression Profile Do Not Correlate with Protection against Tuberculosis after Bacillus Calmette-Guérin Vaccination of Newborns

Benjamin M. Kagina; Brian Abel; Thomas J. Scriba; Elizabeth J. Hughes; Alana Keyser; Andreia Soares; Hoyam Gamieldien; Mzwandile Sidibana; Mark Hatherill; Sebastian Gelderbloem; Hassan Mahomed; Anthony Hawkridge; Gregory D. Hussey; Gilla Kaplan; Willem A. Hanekom

RATIONALE Immunogenicity of new tuberculosis (TB) vaccines is commonly assessed by measuring the frequency and cytokine expression profile of T cells. OBJECTIVES We tested whether this outcome correlates with protection against childhood TB disease after newborn vaccination with bacillus Calmette-Guérin (BCG). METHODS Whole blood from 10-week-old infants, routinely vaccinated with BCG at birth, was incubated with BCG for 12 hours, followed by cryopreservation for intracellular cytokine analysis. Infants were followed for 2 years to identify those who developed culture-positive TB-these infants were regarded as not protected against TB. Infants who did not develop TB disease despite exposure to TB in the household, and another group of randomly selected infants who were never evaluated for TB, were also identified-these groups were regarded as protected against TB. Cells from these groups were thawed, and CD4, CD8, and γδ T cell-specific expression of IFN-γ, TNF-α, IL-2, and IL-17 measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS A total of 5,662 infants were enrolled; 29 unprotected and two groups of 55 protected infants were identified. There was no difference in frequencies of BCG-specific CD4, CD8, and γδ T cells between the three groups of infants. Although BCG induced complex patterns of intracellular cytokine expression, there were no differences between protected and unprotected infants. CONCLUSIONS The frequency and cytokine profile of mycobacteria-specific T cells did not correlate with protection against TB. Critical components of immunity against Mycobacterium tuberculosis, such as CD4 T cell IFN-γ production, may not necessarily translate into immune correlates of protection against TB disease.


Journal of Immunology | 2008

Bacillus Calmette-Guérin Vaccination of Human Newborns Induces T Cells with Complex Cytokine and Phenotypic Profiles

Andreia Soares; Thomas J. Scriba; Sarah Joseph; Ryhor Harbacheuski; Rose Ann Murray; Sebastian Gelderbloem; Anthony Hawkridge; Gregory D. Hussey; Holden T. Maecker; Gilla Kaplan; Willem A. Hanekom

The immune response to vaccination with bacillus Calmette-Guérin (BCG), the only tuberculosis vaccine available, has not been fully characterized. We used multiparameter flow cytometry to examine specific T cell cytokine production and phenotypic profiles in blood from 10-wk-old infants routinely vaccinated with BCG at birth. Ex vivo stimulation of whole blood with BCG for 12 h induced expression of predominantly IFN-γ, IL-2, and TNF-α in CD4+ T cells in seven distinct cytokine combinations. IL-4 and IL-10 expression was detected in CD4+ T cells at low frequencies and only in cells that did not coexpress type 1 cytokines. Specific CD8+ T cells were less frequent than CD4+ T cells and produced mainly IFN-γ and/or IL-2 and less TNF-α, IL-4, and IL-10. Importantly, many mycobacteria-specific CD4+ and CD8+ T cells did not produce IFN-γ. The predominant phenotype of BCG-specific type 1 T cells was that of effector cells, i.e., CD45RA−CCR7−CD27+, which may reflect persistence of Mycobacterium bovis BCG in infants until 10 wk of age. Among five phenotypic patterns of CD4+ T cells, central memory cells were more likely to be IL-2+ and effector cells were more likely to be IFN-γ+. We concluded that neonatal vaccination with BCG induces T cells with a complex pattern of cytokine expression and phenotypes. Measuring IFN-γ production alone underestimates the magnitude and complexity of the host cytokine response to BCG vaccination and may not be an optimal readout in studies of BCG and novel tuberculosis vaccination.


European Journal of Immunology | 2009

Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells

Thomas J. Scriba; Michele Tameris; Nazma Mansoor; Erica Smit; Linda van der Merwe; Fatima Isaacs; Alana Keyser; Sizulu Moyo; Nathaniel Brittain; Alison M. Lawrie; Sebastian Gelderbloem; Ashley Veldsman; Mark Hatherill; Anthony Hawkridge; Adrian V. S. Hill; Gregory D. Hussey; Hassan Mahomed; Helen McShane; Willem A. Hanekom

Modified vaccinia Ankara‐expressing Ag85A (MVA85A) is a new tuberculosis (TB) vaccine aimed at enhancing immunity induced by BCG. We investigated the safety and immunogenicity of MVA85A in healthy adolescents and children from a TB endemic region, who received BCG at birth. Twelve adolescents and 24 children were vaccinated and followed up for 12 or 6 months, respectively. Adverse events were documented and vaccine‐induced immune responses assessed by IFN‐γ ELISpot and intracellular cytokine staining. The vaccine was well tolerated and there were no vaccine‐related serious adverse events. MVA85A induced potent and durable T‐cell responses. Multiple CD4+ T‐cell subsets, based on expression of IFN‐γ, TNF‐α, IL‐2, IL‐17 and GM‐CSF, were induced. Polyfunctional CD4+ T cells co‐expressing IFN‐γ, TNF‐α and IL‐2 dominated the response in both age groups. A novel CD4+ cell subset co‐expressing these three Th1 cytokines and IL‐17 was induced in adolescents, while a novel CD4+ T‐cell subset co‐expressing Th1 cytokines and GM‐CSF was induced in children. Ag‐specific CD8+ T cells were not detected. We conclude that in adolescents and children MVA85A safely induces the type of immunity thought to be important in protection against TB. This includes induction of novel Th1‐cell populations that have not been previously described in humans.


Pediatrics | 2009

Comparison of T-SPOT.TB Assay and Tuberculin Skin Test for the Evaluation of Young Children at High Risk for Tuberculosis in a Community Setting

Mark P. Nicol; Mary-Ann Davies; Kathryn Wood; Mark Hatherill; Lesley Workman; Anthony Hawkridge; Brian Eley; Katalin A. Wilkinson; Robert J. Wilkinson; Willem A. Hanekom; David Beatty; Gregory D. Hussey

OBJECTIVE. We wished to compare the sensitivity of an enzyme-linked immunospot assay (T-SPOT.TB; Oxford Immunotec, Oxford, United Kingdom) and the tuberculin skin test for the detection of tuberculosis infection in very young children being evaluated for active tuberculosis in a rural community setting. METHODS. Children with a history of exposure to tuberculosis and children presenting to a local clinic or hospital with symptoms suggesting tuberculosis were admitted to a dedicated case verification ward. T-SPOT.TB testing was performed, and children were evaluated with a clinical examination, a tuberculin skin test, chest radiographs, and cultures of induced sputum and gastric lavage specimens. The diagnosis was determined by using a clinical algorithm. RESULTS. A total of 243 children (median age: 18 months) were recruited, of whom 214 (88%) had interpretable T-SPOT.TB results. Children ≥12 months of age were more likely than younger children to have positive T-SPOT.TB results, whereas tuberculin skin test results were unaffected by age. The sensitivity of the T-SPOT.TB was no better than that of the tuberculin skin test for culture-confirmed tuberculosis (50% and 80%, respectively) and was poorer for the combined group of culture-confirmed and clinically probable tuberculosis (40% and 52%, respectively). For the 50 children clinically categorized as not having tuberculosis, the specificity of both the T-SPOT.TB and the tuberculin skin test was 84%. CONCLUSIONS. For young children presenting in a community setting after exposure to tuberculosis or with symptoms suggesting tuberculosis, T-SPOT.TB cannot be used to exclude active disease. The sensitivity of this assay may be impaired for very young children.


The Journal of Infectious Diseases | 2006

The Effect of Bacille Calmette-Guérin Vaccine Strain and Route of Administration on Induced Immune Responses in Vaccinated Infants

Virginia Davids; Willem A. Hanekom; Nazma Mansoor; Hoyam Gamieldien; J. Gelderbloem Sebastian; Anthony Hawkridge; Gregory D. Hussey; E. Jane Hughes; Jorge Soler; Rose Ann Murray; Stanley Ress; Gilla Kaplan

Vaccination with Mycobacterium bovis bacille Calmette-Guerin (BCG) has variable efficacy in preventing tuberculosis. Both BCG strain and route of administration have been implicated in determining efficacy; however, these variables are not considered in current clinical recommendations for vaccine choice. We evaluated antigen-specific immunity after percutaneous or intradermal administration of Japanese BCG or intradermal administration of Danish BCG. Ten weeks after vaccination of neonates, percutaneous Japanese BCG had induced significantly higher frequencies of BCG-specific interferon- gamma -producing CD4(+) and CD8(+) T cells in BCG-stimulated whole blood than did intradermal Danish BCG. Similarly, percutaneous vaccination with Japanese BCG resulted in significantly greater secretion of the T helper 1-type cytokines interferon- gamma, tumor necrosis factor- alpha , and interleukin-2; significantly lower secretion of the T helper 2-type cytokine interleukin-4; and greater CD4(+) and CD8(+) T cell proliferation. Thus, BCG strain and route of neonatal vaccination confer different levels of immune activation, which may affect the efficacy of the vaccine.


BMJ | 2008

Efficacy of percutaneous versus intradermal BCG in the prevention of tuberculosis in South African infants: randomised trial

Anthony Hawkridge; Mark Hatherill; Francesca Little; Margaret Ann Goetz; Lew Barker; Hassan Mahomed; Jerald C. Sadoff; Willem A. Hanekom; Larry Geiter; Greg Hussey

Objective To compare the incidence of tuberculosis over two years in infants vaccinated at birth with intradermal BCG or with percutaneous BCG. Design Randomised trial. Setting South Africa. Participants 11 680 newborn infants. Interventions Infants were randomised by week of birth to receive Tokyo 172 BCG vaccine through the percutaneous route (n=5775) or intradermal route (n=5905) within 24 hours of birth and followed up for two years. Main outcome measures The primary outcome measure was documented Mycobacterium tuberculosis infection or radiological and clinical evidence of tuberculosis disease. Secondary outcome measures were rates of adverse events, all cause and tuberculosis specific admissions to hospital, and mortality. Results The difference in the cumulative incidence of definite, probable, and possible tuberculosis between the intradermal group and the percutaneous group, as defined using study definitions based on microbiological, radiological, and clinical findings was −0.36% (95.5% confidence interval −1.27% to 0.54%). No significant differences were found between the routes in the cumulative incidence of tuberculosis using a range of equivalence of “within 25%.” Additionally, no significant differences were found between the routes in the cumulative incidence of adverse events (risk ratio 0.98, 95% confidence interval 0.91 to 1.06), including deaths (1.19, 0.89 to 1.58). Conclusion Equivalence was found between intradermal BCG vaccine and percutaneous BCG in the incidence of tuberculosis in South African infants vaccinated at birth and followed up for two years. The World Health Organization should consider revising its policy of preferential intradermal vaccination to allow national immunisation programmes to choose percutaneous vaccination if that is more practical. Trial registration ClinicalTrials.gov NCT00242047.


Journal of Immunology | 2006

Bacillus Calmette Guerin Vaccination of Human Newborns Induces a Specific, Functional CD8+ T Cell Response

Rose Ann Murray; Nazma Mansoor; Ryhor Harbacheuski; Jorge Soler; Virginia Davids; Andreia Soares; Anthony Hawkridge; Gregory D. Hussey; Holden T. Maecker; Gilla Kaplan; Willem A. Hanekom

Mounting evidence points to CD8+ T cells playing an important role in protective immunity against Mycobacterium tuberculosis. The only available vaccine against tuberculosis, bacillus Calmette Guérin (BCG), has traditionally been viewed not to induce these cells optimally. In this study, we show that vaccination of human newborns with BCG does indeed induce a specific CD8+ T cell response. These cells degranulated or secreted IFN-γ, but not both, when infant blood was incubated with BCG. This stimulation also resulted in proliferation and up-regulation of cytotoxic molecules. Overall, the specific CD8+ T cell response was quantitatively smaller than the BCG-induced CD4+ T cell response. Incubation of whole blood with M. tuberculosis also caused CD8+ T cell IFN-γ expression. We conclude that BCG induces a robust CD8+ T cell response, which may contribute to vaccination-induced protection against tuberculosis.


American Journal of Respiratory and Critical Care Medicine | 2013

Induction and Regulation of T-Cell Immunity by the Novel Tuberculosis Vaccine M72/AS01 in South African Adults

Cheryl L. Day; Michele Tameris; Nazma Mansoor; Michele van Rooyen; Marwou de Kock; Hennie Geldenhuys; Mzwandile Erasmus; Lebohang Makhethe; E. Jane Hughes; Sebastian Gelderbloem; Anne Bollaerts; Patricia Bourguignon; Joe Cohen; Marie-Ange Demoitié; Pascal Mettens; Philippe Moris; Jerald C. Sadoff; Anthony Hawkridge; Gregory D. Hussey; Hassan Mahomed; Opokua Ofori-Anyinam; Willem A. Hanekom

RATIONALE Tuberculosis (TB) is a major cause of morbidity and mortality worldwide, thus there is an urgent need for novel TB vaccines. OBJECTIVES We investigated a novel TB vaccine candidate, M72/AS01, in a phase IIa trial of bacille Calmette-Guérin-vaccinated, HIV-uninfected, and Mycobacterium tuberculosis (Mtb)-infected and -uninfected adults in South Africa. METHODS Two doses of M72/AS01 were administered to healthy adults, with and without latent Mtb infection. Participants were monitored for 7 months after the first dose; cytokine production profiles, cell cycling, and regulatory phenotypes of vaccine-induced T cells were measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS The vaccine had a clinically acceptable safety profile, and induced robust, long-lived M72-specific T-cell and antibody responses. M72-specific CD4 T cells produced multiple combinations of Th1 cytokines. Analysis of T-cell Ki67 expression showed that most vaccination-induced T cells did not express Th1 cytokines or IL-17; these cytokine-negative Ki67(+) T cells included subsets of CD4 T cells with regulatory phenotypes. PD-1, a negative regulator of activated T cells, was transiently expressed on M72-specific CD4 T cells after vaccination. Specific T-cell subsets were present at significantly higher frequencies after vaccination of Mtb-infected versus -uninfected participants. CONCLUSIONS M72/AS01 is clinically well tolerated in Mtb-infected and -uninfected adults, induces high frequencies of multifunctional T cells, and boosts distinct T-cell responses primed by natural Mtb infection. Moreover, these results provide important novel insights into how this immunity may be appropriately regulated after novel TB vaccination of Mtb-infected and -uninfected individuals. Clinical trial registered with www.clinicaltrials.gov (NCT 00600782).


PLOS Pathogens | 2011

Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants

April Kaur Randhawa; Muki Shey; Alana Keyser; Blas Peixoto; Richard D. Wells; Marwou de Kock; Lesedi Lerumo; Jane Hughes; Gregory D. Hussey; Anthony Hawkridge; Gilla Kaplan; Willem A. Hanekom; Thomas R. Hawn

The development of effective immunoprophylaxis against tuberculosis (TB) remains a global priority, but is hampered by a partially protective Bacillus Calmette-Guérin (BCG) vaccine and an incomplete understanding of the mechanisms of immunity to Mycobacterium tuberculosis. Although host genetic factors may be a primary reason for BCGs variable and inadequate efficacy, this possibility has not been intensively examined. We hypothesized that Toll-like receptor (TLR) variation is associated with altered in vivo immune responses to BCG. We examined whether functionally defined TLR pathway polymorphisms were associated with T cell cytokine responses in whole blood stimulated ex vivo with BCG 10 weeks after newborn BCG vaccination of South African infants. In the primary analysis, polymorphism TLR6_C745T (P249S) was associated with increased BCG-induced IFN-γ in both discovery (n = 240) and validation (n = 240) cohorts. In secondary analyses of the combined cohort, TLR1_T1805G (I602S) and TLR6_G1083C (synonymous) were associated with increased IFN-γ, TLR6_G1083C and TLR6_C745T were associated with increased IL-2, and TLR1_A1188T was associated with increased IFN-γ and IL-2. For each of these polymorphisms, the hypo-responsive allele, as defined by innate immunity signaling assays, was associated with increased production of TH1-type T cell cytokines (IFN-γ or IL-2). After stimulation with TLR1/6 lipopeptide ligands, PBMCs from TLR1/6-deficient individuals (stratified by TLR1_T1805G and TLR6_C745T hyporesponsive genotypes) secreted lower amounts of IL-6 and IL-10 compared to those with responsive TLR1/6 genotypes. In contrast, no IL-12p70 was secreted by PBMCs or monocytes. These data support a mechanism where TLR1/6 polymorphisms modulate TH1 T-cell polarization through genetic regulation of monocyte IL-10 secretion in the absence of IL-12. These studies provide evidence that functionally defined innate immune gene variants are associated with the development of adaptive immune responses after in vivo vaccination against a bacterial pathogen in humans. These findings could potentially guide novel adjuvant vaccine strategies as well as have implications for IFN-γ-based diagnostic testing for TB.


American Journal of Respiratory and Critical Care Medicine | 2012

A Phase IIa Trial of the New Tuberculosis Vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis–infected Adults

Thomas J. Scriba; Michele Tameris; Erica Smit; Linda van der Merwe; E. Jane Hughes; Blessing Kadira; Katya Mauff; Sizulu Moyo; Nathaniel Brittain; Alison M. Lawrie; Humphrey Mulenga; Marwou de Kock; Lebohang Makhethe; Esme Janse van Rensburg; Sebastian Gelderbloem; Ashley Veldsman; Mark Hatherill; Hendrik Geldenhuys; Adrian V. S. Hill; Anthony Hawkridge; Gregory D. Hussey; Willem A. Hanekom; Helen McShane; Hassan Mahomed

RATIONALE Novel tuberculosis (TB) vaccines should be safe and effective in populations infected with Mycobacterium tuberculosis (M.tb) and/or HIV for effective TB control. OBJECTIVE To determine the safety and immunogenicity of MVA85A, a novel TB vaccine, among M.tb- and/or HIV-infected persons in a setting where TB and HIV are endemic. METHODS An open-label, phase IIa trial was conducted in 48 adults with M.tb and/or HIV infection. Safety and immunogenicity were analyzed up to 52 weeks after intradermal vaccination with 5 × 10(7) plaque-forming units of MVA85A. Specific T-cell responses were characterized by IFN-γ enzyme-linked immunospot and whole blood intracellular cytokine staining assays. MEASUREMENTS AND MAIN RESULTS MVA85A was well tolerated and no vaccine-related serious adverse events were recorded. MVA85A induced robust and durable response of mostly polyfunctional CD4(+) T cells, coexpressing IFN-γ, tumor necrosis factor-α, and IL-2. Magnitudes of pre- and postvaccination T-cell responses were lower in HIV-infected, compared with HIV-uninfected, vaccinees. No significant effect of antiretroviral therapy on immunogenicity of MVA85A was observed. CONCLUSIONS MVA85A was safe and immunogenic in persons with HIV and/or M.tb infection. These results support further evaluation of safety and efficacy of this vaccine for prevention of TB in these target populations.

Collaboration


Dive into the Anthony Hawkridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilla Kaplan

Public Health Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Abel

University of Cape Town

View shared research outputs
Researchain Logo
Decentralizing Knowledge