Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony J. Baines is active.

Publication


Featured researches published by Anthony J. Baines.


Biotechnology and Bioengineering | 1999

Constraints on the transport and glycosylation of recombinant IFN-γ in Chinese hamster ovary and insect cells

Andrew D. Hooker; Nicola H. Green; Anthony J. Baines; Alan T. Bull; Nigel Jenkins; Philip G. Strange; David C. James

In this study we compare intracellular transport and processing of a recombinant glycoprotein in mammalian and insect cells. Detailed analysis of the N-glycosylation of recombinant human IFN-gamma by matrix-assisted laser-desorption mass spectrometry showed that the protein secreted by Chinese hamster ovary and baculovirus-infected insect Sf9 cells was associated with complex sialylated or truncated tri-mannosyl core glycans, respectively. However, the intracellular proteins were predominantly associated with high-mannose type oligosaccharides (Man-6 to Man-9) in both cases, indicating that endoplasmic reticulum to cis-Golgi transport is a predominant rate-limiting step in both expression systems. In CHO cells, although there was a minor intracellular subpopulation of sialylated IFN-gamma glycoforms identical to the secreted product (therefore associated with late-Golgi compartments or secretory vesicles), no other intermediates were evident. Therefore, anterograde transport processes in the Golgi stack do not limit secretion. In Sf9 insect cells, there was no direct evidence of post-ER glycan-processing events other than core fucosylation and de-mannosylation, both of which were glycosylation site-specific. To investigate the influence of nucleotide-sugar availability on cell-specific glycosylation, the cellular content of nucleotide-sugar substrates in both mammalian and insect cells was quantitatively determined by anion-exchange HPLC. In both host cell types, UDP-hexose and UDP-N-acetylhexosamine were in greater abundance relative to other substrates. However, unlike CHO cells, sialyltransferase activity and CMP-NeuAc substrate were not present in uninfected or baculovirus-infected Sf9 cells. Similar data were obtained for other insect cell hosts, Sf21 and Ea4. We conclude that although the limitations on intracellular transport and secretion of recombinant proteins in mammalian and insect cells are similar, N-glycan processing in Sf insect cells is limited, and that genetic modification of N-glycan processing in these insect cell lines will be constrained by substrate availability to terminal galactosylation.


Applied Microbiology and Biotechnology | 1991

Chinese hamster ovary cell growth and interferon production kinetics in stirred batch culture.

Paul M. Hayter; Elizabeth M. Curling; Anthony J. Baines; Nigel Jenkins; Ian Salmon; Philip G. Strange; Alan T. Bull

SummaryRecombinant human interferon-λ production by Chinese hamster ovary cells was restricted to the growth phase of batch cultures in serum-free medium. The specific interferon production rate was highest during the initial period of exponential growth but declined subsequently in parallel with specific growth rate. This decline in specific growth rate and interferon productivity was associated with a decline in specific metabolic activity as determined by the rate of glucose uptake and the rates of lactate and ammonia production. The ammonia and lactate concentrations that had accumulated by the end of the batch culture were not inhibitory to growth. Glucose was exhausted by the end of the growth phase but increased glucose concentrations did not improve the cell yield or interferon production kinetics. Analysis of amino acid metabolism showed that glutamine and asparagine were exhausted by the end of the growth phase, but supplementation of these amino acids did not improve either cell or product yields. When glutamine was omitted from the growth medium there was no cell proliferation but interferon production occurred, suggesting that recombinant protein production can be uncoupled from cell proliferation.


Biochemical Society Transactions | 2009

Evolution of spectrin function in cytoskeletal and membrane networks

Anthony J. Baines

Spectrin is a cytoskeletal protein thought to have descended from an alpha-actinin-like ancestor. It emerged during evolution of animals to promote integration of cells into tissues by assembling signalling and cell adhesion complexes, by enhancing the mechanical stability of membranes and by promoting assembly of specialized membrane domains. Spectrin functions as an (alphabeta([H]))(2) tetramer that cross-links transmembrane proteins, membrane lipids and the actin cytoskeleton, either directly or via adaptor proteins such as ankyrin and 4.1. In the present paper, I review recent findings on the origins and adaptations in this system. (i) The genome of the choanoflagellate Monosiga brevicollis encodes alpha-, beta- and beta(Heavy)-spectrin, indicating that spectrins evolved in the immediate unicellular precursors of animals. (ii) Ankyrin and 4.1 are not encoded in that genome, indicating that spectrin gained function during subsequent animal evolution. (iii) Protein 4.1 gained a spectrin-binding activity in the evolution of vertebrates. (iv) Interaction of chicken or mammal beta-spectrin with PtdInsP(2) can be regulated by differential mRNA splicing, which can eliminate the PH (pleckstrin homology) domain in betaI- or betaII-spectrins; in the case of mammalian betaII-spectrin, the alternative C-terminal region encodes a phosphorylation site that regulates interaction with alpha-spectrin. (v) In mammalian evolution, the single pre-existing alpha-spectrin gene was duplicated, and one of the resulting pair (alphaI) neo-functionalized for rapid make-and-break of tetramers. I hypothesize that the elasticity of mammalian non-nucleated erythrocytes depends on the dynamic rearrangement of spectrin dimers/tetramers under the shearing forces experienced in circulation.


Protoplasma | 2010

The spectrin–ankyrin–4.1–adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life

Anthony J. Baines

The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins—spectrin, ankyrin, 4.1 and adducin—which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin–ankyrin–4.1–adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin–ankyrin–4.1–adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.


Molecular Biology and Evolution | 2009

The CKK Domain (DUF1781) Binds Microtubules and Defines the CAMSAP/ssp4 Family of Animal Proteins

Anthony J. Baines; Paola A. Bignone; Mikayala D.A. King; Alison M. Maggs; Pauline M. Bennett; Jennifer C. Pinder; Gareth W. Phillips

We describe a structural domain common to proteins related to human calmodulin-regulated spectrin-associated protein1 (CAMSAP1). Analysis of the sequence of CAMSAP1 identified a domain near the C-terminus common to CAMSAP1 and two other mammalian proteins KIAA1078 and KIAA1543, which we term a CKK domain. This domain was also present in invertebrate CAMSAP1 homologues and was found in all available eumetazoan genomes (including cnidaria), but not in the placozoan Trichoplax adherens, nor in any nonmetazoan organism. Analysis of codon alignments by the sitewise likelihood ratio method gave evidence for strong purifying selection on all codons of mammalian CKK domains, potentially indicating conserved function. Interestingly, the Drosophila homologue of the CAMSAP family is encoded by the ssp4 gene, which is required for normal formation of mitotic spindles. To investigate function of the CKK domain, human CAMSAP1-enhanced green fluorescent protein (EGFP) and fragments including the CKK domain were expressed in HeLa cells. Both whole CAMSAP1 and the CKK domain showed localization coincident with microtubules. In vitro, both whole CAMSAP1-glutathione-s-transferase (GST) and CKK-GST bound to microtubules. Immunofluorescence using anti-CAMSAP1 antibodies on cerebellar granule neurons revealed a microtubule pattern. Overexpression of the CKK domain in PC12 cells blocked production of neurites, a process that requires microtubule function. We conclude that the CKK domain binds microtubules and represents a domain that evolved with the metazoa.


Journal of Biological Chemistry | 2006

Conformational Stabilities of the Structural Repeats of Erythroid Spectrin and Their Functional Implications

Xiuli An; Xinhua Guo; Xihui Zhang; Anthony J. Baines; Gargi Debnath; Damali Moyo; Marcela Salomao; Nishant Bhasin; Colin G. Johnson; Dennis E. Discher; Walter Gratzer; Narla Mohandas

The two polypeptide chains of the erythroid spectrin heterodimer contain between them 36 structural repeating modules, which can function as independently folding units. We have expressed all 36 and determined their thermal stabilities. These vary widely, with unfolding transition mid-points (Tm) ranging from 21 to 72 °C. Eight of the isolated repeats are largely unfolded at physiological temperature. Constructs comprising two or more adjacent repeats show inter-repeat coupling with coupling free energies of several kcal mol-1. Constructs comprising five successive repeats from the β-chain displayed cooperativity and strong temperature dependence in forced unfolding by atomic force microscopy. Analysis of aligned sequences and molecular modeling suggests that high stability is conferred by large hydrophobic side chains at position e of the heptad hydrophobic repeats in the first helix of the three-helix bundle that makes up each repeat. This inference was borne out by the properties of mutants in which the critical residues have been replaced. The marginal stability of the tertiary structure at several points in the spectrin chains is moderated by energetic coupling with adjoining structural elements but may be expected to permit adaptation of the membrane to the large distortions that the red cell experiences in the circulation.


Biochimica et Biophysica Acta | 2014

The Protein 4.1 family: hub proteins in animals for organizing membrane proteins.

Anthony J. Baines; Hui-Chun Lu; Pauline M. Bennett

Proteins of the 4.1 family are characteristic of eumetazoan organisms. Invertebrates contain single 4.1 genes and the Drosophila model suggests that 4.1 is essential for animal life. Vertebrates have four paralogues, known as 4.1R, 4.1N, 4.1G and 4.1B, which are additionally duplicated in the ray-finned fish. Protein 4.1R was the first to be discovered: it is a major mammalian erythrocyte cytoskeletal protein, essential to the mechanochemical properties of red cell membranes because it promotes the interaction between spectrin and actin in the membrane cytoskeleton. 4.1R also binds certain phospholipids and is required for the stable cell surface accumulation of a number of erythrocyte transmembrane proteins that span multiple functional classes; these include cell adhesion molecules, transporters and a chemokine receptor. The vertebrate 4.1 proteins are expressed in most tissues, and they are required for the correct cell surface accumulation of a very wide variety of membrane proteins including G-Protein coupled receptors, voltage-gated and ligand-gated channels, as well as the classes identified in erythrocytes. Indeed, such large numbers of protein interactions have been mapped for mammalian 4.1 proteins, most especially 4.1R, that it appears that they can act as hubs for membrane protein organization. The range of critical interactions of 4.1 proteins is reflected in disease relationships that include hereditary anaemias, tumour suppression, control of heartbeat and nervous system function. The 4.1 proteins are defined by their domain structure: apart from the spectrin/actin-binding domain they have FERM and FERM-adjacent domains and a unique C-terminal domain. Both the FERM and C-terminal domains can bind transmembrane proteins, thus they have the potential to be cross-linkers for membrane proteins. The activity of the FERM domain is subject to multiple modes of regulation via binding of regulatory ligands, phosphorylation of the FERM associated domain and differential mRNA splicing. Finally, the spectrum of interactions of the 4.1 proteins overlaps with that of another membrane-cytoskeleton linker, ankyrin. Both ankyrin and 4.1 link to the actin cytoskeleton via spectrin, and we hypothesize that differential regulation of 4.1 proteins and ankyrins allows highly selective control of cell surface protein accumulation and, hence, function. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé


Circulation Research | 2008

Cytoskeletal Protein 4.1R Affects Repolarization and Regulates Calcium Handling in the Heart

Mark A. Stagg; Edward A. Carter; Nadia Sohrabi; Urszula Siedlecka; Gopal K. Soppa; Fiona Mead; Narla Mohandas; Pamela M. Taylor-Harris; Anthony J. Baines; Pauline M. Bennett; Magdi H. Yacoub; Jennifer C. Pinder; Cesare M. Terracciano

The 4.1 proteins are a family of multifunctional adaptor proteins. They promote the mechanical stability of plasma membranes by interaction with the cytoskeletal proteins spectrin and actin and are required for the cell surface expression of a number of transmembrane proteins. Protein 4.1R is expressed in heart and upregulated in deteriorating human heart failure, but its functional role in myocardium is unknown. To investigate the role of protein 4.1R on myocardial contractility and electrophysiology, we studied 4.1R-deficient (knockout) mice (4.1R KO). ECG analysis revealed reduced heart rate with prolonged Q-T interval in 4.1R KO. No changes in ejection fraction and fractional shortening, assessed by echocardiography, were found. The action potential duration in isolated ventricular myocytes was prolonged in 4.1R KO. Ca2+ transients were larger and slower to decay in 4.1R KO. The sarcoplasmic reticulum Ca2+ content and Ca2+ sparks frequency were increased. The Na+/Ca2+ exchanger current density was reduced in 4.1R KO. The transient inward current inactivation was faster and the persistent Na+ current density was increased in the 4.1R KO group, with possible effects on action potential duration. Although no major morphological changes were noted, 4.1R KO hearts showed reduced expression of NaV1.5&agr; and increased expression of protein 4.1G. Our data indicate an unexpected and novel role for the cytoskeletal protein 4.1R in modulating the functional properties of several cardiac ion transporters with consequences on cardiac electrophysiology and with possible significant roles during normal cardiac function and disease.


BMC Genomics | 2006

A FERM-adjacent (FA) region defines a subset of the 4.1 superfamily and is a potential regulator of FERM domain function

Anthony J. Baines

BackgroundProteins containing FERM domains comprise a diverse group of eukaryotic proteins that bind membrane proteins and lipids. In doing so, they organise membrane microstructure, and coordinate the disposition of signalling and cell adhesion complexes. In protein 4.1R, phosphorylation adjacent to the FERM domain regulates its activity, and membrane mechanical properties.ResultsA novel sequence domain has been detected in a subset of proteins that contain FERM domains. This subset includes the true 4.1 proteins, some tyrosine phosphatases, rho-GEF proteins and type II transmembrane proteins, as well as some uncharacterised FERM proteins. This FERM-adjacent region is always closely proximate to the C-terminal of the FERM domain. This sequence is likely to be folded with elements of α and β structure. The FERM-adjacent region of 4.1R contains serine residues phosphorylated by PKC and PKA; these appear conserved in about half of all other FERM-adjacent regions. Phylogenetic analyses indicate that all proteins containing a FERM-adjacent region arose from a single ancestor after FERM domains had started to proliferate in genomes of animals, plants and mycetozoa.ConclusionThe FERM-adjacent region defines a subset of the FERM proteins in animals. The conservation of motifs in this region that are potential substrates for kinases together with the known regulatory phosphorylation of 4.1R in this region raises the possibility that the FERM-adjacent region is a regulatory adaptation in this subset of the FERM proteins.


Blood Cells Molecules and Diseases | 2009

Protein 4.1 and the control of ion channels

Anthony J. Baines; Pauline M. Bennett; Edward Carter; Cesare M. Terracciano

The classical function of 4.1R in red blood cells is to contribute to the mechanochemical properties of the membrane by promoting the interaction between spectrin and actin. More recently, it has been recognized that 4.1R is required for the stable cell surface accumulation of a number of erythrocyte membrane proteins. 4.1R is one member of the mammalian 4.1 family - the others being 4.1N, 4.1G and 4.1B - and is expressed in many cell types other than erythrocytes. Recently we have examined the phenotype of hearts from 4.1R knockout mice. Although they had a generally normal morphology, these hearts exhibited bradycardia, and prolongation of both action potentials and QT intervals. Electrophysiological analysis revealed anomalies in a range of ion channel activities. In addition, the immunoreactivity of voltage-gated Na(+) channel NaV1.5 was reduced, indicating a role for 4.1R in the cellular accumulation of this ion channel. 4.1 proteins also have roles in the accumulation of at least two other classes of ion channel. In epithelia, 4.1 interacts with the store-operated channel TRPC4. In neurons, the ligand-gated channels GluR1 and GluR4 require 4.1 proteins for cell surface accumulation. The spectrum of transmembrane proteins that bind to 4.1 proteins overlaps with that of ankyrin. A hypothesis to investigate in the future is that differential regulation of 4.1 and ankyrins (e.g. by PIP(2)) allows highly selective control of cell surface accumulation and transport activity of a specific range of ion channels.

Collaboration


Dive into the Anthony J. Baines's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiuli An

New York Blood Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge