Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony J. Fulford is active.

Publication


Featured researches published by Anthony J. Fulford.


The Lancet | 2008

Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis

Serign J. Ceesay; Climent Casals-Pascual; Jamie Erskine; Samuel E Anya; Nancy O. Duah; Anthony J. Fulford; Sanie S. S. Sesay; Ismaela Abubakar; Samuel K. Dunyo; Omar Sey; Ayo Palmer; Malang Fofana; Tumani Corrah; Kalifa Bojang; Hilton Whittle; Brian Greenwood; David J. Conway

Summary Background Malaria is a major cause of morbidity and mortality in Africa. International effort and funding for control has been stepped up, with substantial increases from 2003 in the delivery of malaria interventions to pregnant women and children younger than 5 years in The Gambia. We investigated the changes in malaria indices in this country, and the causes and public-health significance of these changes. Methods We undertook a retrospective analysis of original records to establish numbers and proportions of malaria inpatients, deaths, and blood-slide examinations at one hospital over 9 years (January, 1999–December, 2007), and at four health facilities in three different administrative regions over 7 years (January, 2001–December, 2007). We obtained additional data from single sites for haemoglobin concentrations in paediatric admissions and for age distribution of malaria admissions. Findings From 2003 to 2007, at four sites with complete slide examination records, the proportions of malaria-positive slides decreased by 82% (3397/10861 in 2003 to 337/6142 in 2007), 85% (137/1259 to 6/368), 73% (3664/16932 to 666/11333), and 50% (1206/3304 to 336/1853). At three sites with complete admission records, the proportions of malaria admissions fell by 74% (435/2530 to 69/1531), 69% (797/2824 to 89/1032), and 27% (2204/4056 to 496/1251). Proportions of deaths attributed to malaria in two hospitals decreased by 100% (seven of 115 in 2003 to none of 117 in 2007) and 90% (22/122 in 2003 to one of 58 in 2007). Since 2004, mean haemoglobin concentrations for all-cause admissions increased by 12 g/L (85 g/L in 2000–04 to 97 g/L in 2005–07), and mean age of paediatric malaria admissions increased from 3·9 years (95% CI 3·7–4·0) to 5·6 years (5·0–6·2). Interpretation A large proportion of the malaria burden has been alleviated in The Gambia. Our results encourage consideration of a policy to eliminate malaria as a public-health problem, while emphasising the importance of accurate and continuous surveillance. Funding UK Medical Research Council.


Nature Communications | 2014

Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

Paula Dominguez-Salas; Sophie E. Moore; Maria S. Baker; Andrew W. Bergen; Sharon E. Cox; Roger A. Dyer; Anthony J. Fulford; Yongtao Guan; Eleonora Laritsky; Matt Silver; Gary E. Swan; Steven H. Zeisel; Sheila M. Innis; Robert A. Waterland; Andrew M. Prentice; Branwen J. Hennig

In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed us to test this in humans. We show that significant seasonal variations in methyl-donor nutrient intake of mothers around the time of conception influence 13 relevant plasma biomarkers. The level of several of these maternal biomarkers predicts increased/decreased methylation at metastable epialleles in DNA extracted from lymphocytes and hair follicles in infants postnatally. Our results demonstrate that maternal nutritional status during early pregnancy causes persistent and systemic epigenetic changes at human metastable epialleles.


The American Journal of Clinical Nutrition | 2013

Critical windows for nutritional interventions against stunting.

Andrew M. Prentice; Kate Ward; Gail R. Goldberg; Landing M. A. Jarjou; Sophie E. Moore; Anthony J. Fulford; Ann Prentice

An analysis of early growth patterns in children from 54 resource-poor countries in Africa and Southeast Asia shows a rapid falloff in the height-for-age z score during the first 2 y of life and no recovery until ≥5 y of age. This finding has focused attention on the period −9 to 24 mo as a window of opportunity for interventions against stunting and has garnered considerable political backing for investment targeted at the first 1000 d. These important initiatives should not be undermined, but the objective of this study was to counteract the growing impression that interventions outside of this period cannot be effective. We illustrate our arguments using longitudinal data from the Consortium of Health Oriented Research in Transitioning collaboration (Brazil, Guatemala, India, Philippines, and South Africa) and our own cross-sectional and longitudinal growth data from rural Gambia. We show that substantial height catch-up occurs between 24 mo and midchildhood and again between midchildhood and adulthood, even in the absence of any interventions. Longitudinal growth data from rural Gambia also illustrate that an extended pubertal growth phase allows very considerable height recovery, especially in girls during adolescence. In light of the critical importance of maternal stature to her childrens health, our arguments are a reminder of the importance of the more comprehensive UNICEF/Sub-Committee on Nutrition Through the Life-Cycle approach. In particular, we argue that adolescence represents an additional window of opportunity during which substantial life cycle and intergenerational effects can be accrued. The regulation of such growth is complex and may be affected by nutritional interventions imposed many years previously.


International Journal of Obesity | 2008

Evolutionary origins of the obesity epidemic: natural selection of thrifty genes or genetic drift following predation release?

Andrew M. Prentice; Branwen J. Hennig; Anthony J. Fulford

This article challenges Speakmans hypothesis that the modern genetic predisposition to obesity has arisen through random genetic drift in the two million years following predation release. We present evidence in support of the hypothesis that a mixture of famines and seasonal food shortages in the post-agricultural era have exerted natural selection in favour of fat storage; an effect most likely mediated through fertility, rather than viability, selection. We conclude that, far from being time to call off the search, recently developed genetic and bio-informatic methods will soon provide a definitive resolution to this long-standing ‘thrifty gene’ controversy.


Nature Communications | 2015

Widespread seasonal gene expression reveals annual differences in human immunity and physiology.

Xaquin Castro Dopico; Marina Evangelou; Ricardo C. Ferreira; Hui Guo; Marcin L. Pekalski; Deborah J. Smyth; Nicholas J. Cooper; Oliver Burren; Anthony J. Fulford; Branwen J. Hennig; Andrew M. Prentice; Anette G. Ziegler; Ezio Bonifacio; Chris Wallace; John A. Todd

Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.


PLOS ONE | 2010

Continued decline of malaria in The Gambia with implications for elimination.

Serign J. Ceesay; Climent Casals-Pascual; Davis Nwakanma; Michael Walther; Natalia Gomez-Escobar; Anthony J. Fulford; Ebako N. Takem; Sarah I. Nogaro; Kalifa Bojang; Tumani Corrah; Momodou Cherno Jaye; Makie Taal; Aja Adam Jagne Sonko; David J. Conway

Background A substantial decline in malaria was reported to have occurred over several years until 2007 in the western part of The Gambia, encouraging consideration of future elimination in this previously highly endemic region. Scale up of interventions has since increased with support from the Global Fund and other donors. Methodology/Principal Findings We continued to examine laboratory records at four health facilities previously studied and investigated six additional facilities for a 7 year period, adding data from 243,707 slide examinations, to determine trends throughout the country until the end of 2009. We actively detected infections in a community cohort of 800 children living in rural villages throughout the 2008 malaria season, and assayed serological changes in another rural population between 2006 and 2009. Proportions of malaria positive slides declined significantly at all of the 10 health facilities between 2003 (annual mean across all sites, 38.7%) and 2009 (annual mean, 7.9%). Statistical modelling of trends confirmed significant seasonality and decline over time at each facility. Slide positivity was lowest in 2009 at all sites, except two where lowest levels were observed in 2006. Mapping households of cases presenting at the latter sites in 2007–2009 indicated that these were not restricted to a few residual foci. Only 2.8% (22/800) of a rural cohort of children had a malaria episode in the 2008 season, and there was substantial serological decline between 2006 and 2009 in a separate rural area. Conclusions Malaria has continued to decline in The Gambia, as indicated by a downward trend in slide positivity at health facilities, and unprecedented low incidence and seroprevalence in community surveys. We recommend intensification of control interventions for several years to further reduce incidence, prior to considering an elimination programme.


BMC Medical Genetics | 2009

FTO gene variation and measures of body mass in an African population

Branwen J. Hennig; Anthony J. Fulford; Giorgio Sirugo; Pura Rayco-Solon; Andrew T. Hattersley; Timothy M. Frayling; Andrew M. Prentice

BackgroundVariation in the fat mass and obesity associated (FTO) gene has been reproducibly associated with body mass index (BMI) and obesity in populations of White European origin. Data from Asians and African-Americans is less conclusive.MethodsWe assessed the effect of 16 FTO polymorphisms on body mass in a large population of predominantly lean Gambians (Nmax 2208) participating in a long-term surveillance program providing contemporary and early-life anthropometric measurements.ResultsSixteen FTO tagSNPs screened here, including several associated with BMI in Europeans, were not associated with birth weight (BWT), early weight gain in 1–2 year olds, BMI in adults (≥ 18 y), or weight-for-height (WFH) z-score across all ages. No association was seen between genotype and WFH z-score or other measures of body mass. The confidence limits indicate that the effect size for WFH z-score never exceeded 0.17 units per allele copy for any SNP (excluding the three SNPs with allele < 15%). with much the lowest allele frequency. The confidence interval of the effect size for rs9939609 did not overlap that reported previously in Europeans.ConclusionTo our knowledge this is the first study of FTO gene variation in a well-characterised African population. Our results suggest that FTO gene variation does not influence measures of body mass in Gambians living a traditional lifestyle, or has a smaller effect than that detected in Europeans. These findings are not directly comparable to results from previous studies in African-Americans due to differences in study design and analysis. It is also possible that any effect of FTO genotype on body mass is of limited relevance in a lean population where little excess food is available, compared to similar ethnic populations where food supply is plentiful.


The American Journal of Clinical Nutrition | 2013

DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women

Paula Dominguez-Salas; Sophie E. Moore; Darren Cole; Kerry Ann Da Costa; Sharon E. Cox; Roger A. Dyer; Anthony J. Fulford; Sheila M. Innis; Robert A. Waterland; Steven H. Zeisel; Andrew M. Prentice; Branwen J. Hennig

Background: Animal models show that periconceptional supplementation with folic acid, vitamin B-12, choline, and betaine can induce differences in offspring phenotype mediated by epigenetic changes in DNA. In humans, altered DNA methylation patterns have been observed in offspring whose mothers were exposed to famine or who conceived in the Gambian rainy season. Objective: The objective was to understand the seasonality of DNA methylation patterns in rural Gambian women. We studied natural variations in dietary intake of nutrients involved in methyl-donor pathways and their effect on the respective metabolic biomarkers. Design: In 30 women of reproductive age (18–45 y), we monitored diets monthly for 1 y by using 48-h weighed records to measure intakes of choline, betaine, folate, methionine, riboflavin, and vitamins B-6 and B-12. Blood biomarkers of these nutrients, S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), homocysteine, cysteine, and dimethylglycine were also assessed monthly. Results: Dietary intakes of riboflavin, folate, choline, and betaine varied significantly by season; the most dramatic variation was seen for betaine. All metabolic biomarkers showed significant seasonality, and vitamin B-6 and folate had the highest fluctuations. Correlations between dietary intakes and blood biomarkers were found for riboflavin, vitamin B-6, active vitamin B-12 (holotranscobalamin), and betaine. We observed a seasonal switch between the betaine and folate pathways and a probable limiting role of riboflavin in these processes and a higher SAM/SAH ratio during the rainy season. Conclusions: Naturally occurring seasonal variations in food-consumption patterns have a profound effect on methyl-donor biomarker status. The direction of these changes was consistent with previously reported differences in methylation of metastable epialleles. This trial was registered at www.clinicaltrials.gov as NCT01811641.


Acta Paediatrica | 2009

Early-life nutritional and environmental determinants of thymic size in infants born in rural Bangladesh

Sophie E. Moore; Ann Prentice; Yukiko Wagatsuma; Anthony J. Fulford; Andrew C. Collinson; Rubhana Raqib; Marie Vahter; Lars Åke Persson; Shams El Arifeen

Aim:  The aim was to assess the impact of nutritional status and environmental exposures on infant thymic development in the rural Matlab region of Bangladesh.


Genome Biology | 2015

Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment.

Matt Silver; Noah J. Kessler; Branwen J. Hennig; Paula Dominguez-Salas; Eleonora Laritsky; Maria S. Baker; Cristian Coarfa; Hector Hernandez-Vargas; Jovita M. Castelino; Michael N. Routledge; Yun Yun Gong; Zdenko Herceg; Yong Sun Lee; Kwanbok Lee; Sophie E. Moore; Anthony J. Fulford; Andrew M. Prentice; Robert A. Waterland

BackgroundInterindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants.ResultsFirst, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements.ConclusionsThe non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.

Collaboration


Dive into the Anthony J. Fulford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Prentice

MRC Human Nutrition Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominic P. Kwiatkowski

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge