Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony J. Harmar is active.

Publication


Featured researches published by Anthony J. Harmar.


Nucleic Acids Research | 2014

The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands

Adam J. Pawson; Joanna L. Sharman; Helen E. Benson; Elena Faccenda; Stephen P.H. Alexander; O. Peter Buneman; Anthony P. Davenport; J.C. McGrath; John A. Peters; Christopher Southan; Michael Spedding; Wenyuan Yu; Anthony J. Harmar; Nc-Iuphar

The International Union of Basic and Clinical Pharmacology/British Pharmacological Society (IUPHAR/BPS) Guide to PHARMACOLOGY (http://www.guidetopharmacology.org) is a new open access resource providing pharmacological, chemical, genetic, functional and pathophysiological data on the targets of approved and experimental drugs. Created under the auspices of the IUPHAR and the BPS, the portal provides concise, peer-reviewed overviews of the key properties of a wide range of established and potential drug targets, with in-depth information for a subset of important targets. The resource is the result of curation and integration of data from the IUPHAR Database (IUPHAR-DB) and the published BPS ‘Guide to Receptors and Channels’ (GRAC) compendium. The data are derived from a global network of expert contributors, and the information is extensively linked to relevant databases, including ChEMBL, DrugBank, Ensembl, PubChem, UniProt and PubMed. Each of the ∼6000 small molecule and peptide ligands is annotated with manually curated 2D chemical structures or amino acid sequences, nomenclature and database links. Future expansion of the resource will complete the coverage of all the targets of currently approved drugs and future candidate targets, alongside educational resources to guide scientists and students in pharmacological principles and techniques.


Nature Neuroscience | 2005

Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons

Sara J. Aton; Christopher S. Colwell; Anthony J. Harmar; James A. Waschek; Erik D. Herzog

The mammalian suprachiasmatic nucleus (SCN) is a master circadian pacemaker. It is not known which SCN neurons are autonomous pacemakers or how they synchronize their daily firing rhythms to coordinate circadian behavior. Vasoactive intestinal polypeptide (VIP) and the VIP receptor VPAC2 (encoded by the gene Vipr2) may mediate rhythms in individual SCN neurons, synchrony between neurons, or both. We found that Vip−/− and Vipr2−/− mice showed two daily bouts of activity in a skeleton photoperiod and multiple circadian periods in constant darkness. Loss of VIP or VPAC2 also abolished circadian firing rhythms in approximately half of all SCN neurons and disrupted synchrony between rhythmic neurons. Critically, daily application of a VPAC2 agonist restored rhythmicity and synchrony to VIP−/− SCN neurons, but not to Vipr2−/− neurons. We conclude that VIP coordinates daily rhythms in the SCN and behavior by synchronizing a small population of pacemaking neurons and maintaining rhythmicity in a larger subset of neurons.


British Journal of Pharmacology | 2013

The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors.

Stephen P.H. Alexander; Helen E. Benson; Elena Faccenda; Adam J. Pawson; Joanna L. Sharman; Michael Spedding; John A. Peters; Anthony J. Harmar

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.


British Journal of Pharmacology | 2013

The Concise Guide to Pharmacology 2013/14.: The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

Stephen P.H. Alexander; Helen E. Benson; Elena Faccenda; Adam J. Pawson; Joanna L. Sharman; Michael Spedding; John A. Peters; Anthony J. Harmar

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.


FEBS Letters | 1993

The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide

E M Lutz; W J Sheward; Katrine M. West; J A Morrow; George Fink; Anthony J. Harmar

We have cloned and sequenced a cDNA (RPR4) encoding a new member of the secretin/calcitonin/parathyroid hormone (PTH) receptor family. RPR4 was identified by PCR of rat pituitary cDNA, and a full‐length clone was isolated from a rat olfactory bulb cDNA library. When RPR4 was functionally expressed in COS 7 cells, cyclic adenosine monophosphate (cAMP) production was stimulated by vasoactive intestinal peptide (VIP), pituitary adenylate cyclase activating peptides (PACAP‐38 and PACAP‐27) and helodermin, with equal potency. Peptide histidine isoleucine (PHI) and rat growth hormone releasing hormone (rGHRH) also stimulated cAMP production at lower potency. This suggests that RPR4 encodes a novel VIP receptor which we have designated the VIP2 receptor. In situ hybridisation showed that mRNA for this receptor was present mainly in the thalamus, hippocampus and in the suprachiasmatic nucleus.


British Journal of Pharmacology | 2013

The Concise Guide to PHARMACOLOGY 2013/14: enzymes

Stephen P.H. Alexander; Helen E. Benson; Elena Faccenda; Adam J. Pawson; Joanna L. Sharman; Michael Spedding; John A. Peters; Anthony J. Harmar

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.


Cell | 2002

The VPAC2 Receptor Is Essential for Circadian Function in the Mouse Suprachiasmatic Nuclei

Anthony J. Harmar; Hugh M. Marston; Sanbing Shen; Christopher Spratt; Katrine M. West; W. John Sheward; Christine F. Morrison; Julia R. Dorin; Hugh D. Piggins; Jean Claude Reubi; John S. Kelly; Elizabeth S. Maywood; Michael H. Hastings

The neuropeptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are implicated in the photic entrainment of circadian rhythms in the suprachiasmatic nuclei (SCN). We now report that mice carrying a null mutation of the VPAC(2) receptor for VIP and PACAP (Vipr2(-/-)) are incapable of sustaining normal circadian rhythms of rest/activity behavior. These mice also fail to exhibit circadian expression of the core clock genes mPer1, mPer2, and mCry1 and the clock-controlled gene arginine vasopressin (AVP) in the SCN. Moreover, the mutants fail to show acute induction of mPer1 and mPer2 by nocturnal illumination. This study highlights the role of intercellular neuropeptidergic signaling in maintenance of circadian function within the SCN.


Pharmacological Reviews | 2005

International Union of Pharmacology. XLVI. G Protein-Coupled Receptor List

Steven M. Foord; Tom I. Bonner; Richard R. Neubig; Edward M. Rosser; Jean-Phillipe Pin; Anthony P. Davenport; Michael Spedding; Anthony J. Harmar

NC-IUPHAR (International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification) and its subcommittees provide authoritative reports on the nomenclature and pharmacology of G protein-coupled receptors (GPCRs) that summarize their structure, pharmacology, and roles in physiology and pathology. These reports are published in Pharmacological Reviews (http://www.iuphar.org/nciuphar_arti.html) and through the International Union of Pharmacology (IUPHAR) Receptor Database web site (http://www.iuphar-db.org/iuphar-rd). The essentially complete sequencing of the human genome has allowed the cataloging of all of the human gene sequences potentially encoding GPCRs. The IUPHAR Receptor List (http://www.iuphar-db.org/iuphar-rd/list/index.htm) presents this catalog giving IUPHAR-approved nomenclature (where available), known ligands, and gene names for all of these potential receptors (excluding sensory receptors and pseudogenes) together with links to curated sequence, descriptive information, and additional links in the Entrez Gene database (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene). This list is a major new initiative of NC-IUPHAR that, through continuing curation, defines the target of our ongoing receptor classification and invites further input from the scientific community.


Current Biology | 2006

Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling.

Elizabeth S. Maywood; Akhilesh B. Reddy; Gabriel K.Y. Wong; John S. O'Neill; John A. O'Brien; Douglas G. McMahon; Anthony J. Harmar; Hitoshi Okamura; Michael H. Hastings

Circadian timekeeping in mammals is driven by transcriptional/posttranslational feedback loops that are active within both peripheral tissues and the circadian pacemaker of the suprachiasmatic nuclei (SCN). Spontaneous synchronization of these molecular loops between SCN neurons is a primary requirement of its pacemaker role and distinguishes it from peripheral tissues, which require extrinsic, SCN-dependent cues to impose cellular synchrony. Vasoactive intestinal polypeptide (VIP) is an intrinsic SCN factor implicated in acute activation and electrical synchronization of SCN neurons and coordination of behavioral rhythms. Using real-time imaging of cellular circadian gene expression across entire SCN slice cultures, we show for the first time that the Vipr2 gene encoding the VPAC2 receptor for VIP is necessary both to maintain molecular timekeeping within individual SCN neurons and to synchronize molecular timekeeping between SCN neurons embedded within intact, organotypical circuits. Moreover, we demonstrate that both depolarization and a second SCN neuropeptide, gastrin-releasing peptide (GRP), can acutely enhance and synchronize molecular timekeeping in Vipr2-/- SCN neurons. Nevertheless, transiently activated and synchronized Vipr2-/- cells cannot sustain synchrony in the absence of VIP-ergic signaling. Hence, neuropeptidergic interneuronal signaling confers a canonical property upon the SCN: spontaneous synchronization of the intracellular molecular clockworks of individual neurons.


British Journal of Pharmacology | 2013

The Concise Guide to PHARMACOLOGY 2013/14: Ion Channels

Stephen P.H. Alexander; Helen E. Benson; Elena Faccenda; Adam J. Pawson; Joanna L. Sharman; William A. Catterall; Michael Spedding; John A. Peters; Anthony J. Harmar

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

Collaboration


Dive into the Anthony J. Harmar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanbing Shen

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge