Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony L. Albiston is active.

Publication


Featured researches published by Anthony L. Albiston.


The International Journal of Biochemistry & Cell Biology | 2003

The brain renin-angiotensin system: location and physiological roles

Michael J. McKinley; Anthony L. Albiston; Andrew M. Allen; Michael L. Mathai; Clive N. May; Robin M. McAllen; Brian J. Oldfield; Frederick A.O. Mendelsohn; Siew Yeen Chai

Angiotensinogen, the precursor molecule for angiotensins I, II and III, and the enzymes renin, angiotensin-converting enzyme (ACE), and aminopeptidases A and N may all be synthesised within the brain. Angiotensin (Ang) AT(1), AT(2) and AT(4) receptors are also plentiful in the brain. AT(1) receptors are found in several brain regions, such as the hypothalamic paraventricular and supraoptic nuclei, the lamina terminalis, lateral parabrachial nucleus, ventrolateral medulla and nucleus of the solitary tract (NTS), which are known to have roles in the regulation of the cardiovascular system and/or body fluid and electrolyte balance. Immunohistochemical and neuropharmacological studies suggest that angiotensinergic neural pathways utilise Ang II and/or Ang III as a neurotransmitter or neuromodulator in the aforementioned brain regions. Angiotensinogen is synthesised predominantly in astrocytes, but the processes by which Ang II is generated or incorporated in neurons for utilisation as a neurotransmitter is unknown. Centrally administered AT(1) receptor antagonists or angiotensinogen antisense oligonucleotides inhibit sympathetic activity and reduce arterial blood pressure in certain physiological or pathophysiological conditions, as well as disrupting water drinking and sodium appetite, vasopressin secretion, sodium excretion, renin release and thermoregulation. The AT(4) receptor is identical to insulin-regulated aminopeptidase (IRAP) and plays a role in memory mechanisms. In conclusion, angiotensinergic neural pathways and angiotensin peptides are important in neural function and may have important homeostatic roles, particularly related to cardiovascular function, osmoregulation and thermoregulation.


Cellular Signalling | 2001

Receptor activity modifying proteins

Patrick M. Sexton; Anthony L. Albiston; Maria Morfis; Nanda Tilakaratne

Our understanding of G protein-coupled receptor (GPCR) function has recently expanded to encompass novel protein interactions that underlie both cell-surface receptor expression and the exhibited phenotype. The most notable examples are those involving receptor activity modifying proteins (RAMPs). RAMP association with the calcitonin (CT) receptor-like receptor (CRLR) traffics this receptor to the cell surface where individual RAMPs dictate the expression of unique phenotypes. A similar function has been ascribed to RAMP interaction with the CT receptor (CTR) gene product. This review examines our current state of knowledge of the mechanisms underlying RAMP function.


Cellular and Molecular Life Sciences | 2004

The angiotensin IV/AT4 receptor.

Siew Yeen Chai; Ruani N. Fernando; Grantley Ross Peck; Siying Ye; Frederick A.O. Mendelsohn; Trisha A. Jenkins; Anthony L. Albiston

Abstract.The angiotensin AT4 receptor was originally defined as the specific, high-affinity binding site for the hexapeptide angiotensin IV (Ang IV). Subsequently, the peptide LVV-hemorphin 7 was also demonstrated to be a bioactive ligand of the AT4 receptor. Central administration of Ang IV, its analogues or LVV-hemorphin 7 markedly enhance learning and memory in normal rodents and reverse memory deficits observed in animal models of amnesia. The AT4 receptor has a broad distribution and is found in a range of tissues, including the adrenal gland, kidney, lung and heart. In the kidney Ang IV increases renal cortical blood flow and decreases Na+ transport in isolated renal proximal tubules. The AT4 receptor has recently been identified as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). IRAP is a type II integral membrane spanning protein belonging to the M1 family of aminopeptidases and is predominantly found in GLUT4 vesicles in insulin-responsive cells. Three hypotheses for the memory-potentiating effects of the AT4 receptor/IRAP ligands, Ang IV and LVV-hemorphin 7, are proposed: (i) acting as potent inhibitors of IRAP, they may prolong the action of endogenous promnestic peptides; (ii) they may modulate glucose uptake by modulating trafficking of GLUT4; (iii) IRAP may act as a receptor, transducing the signal initiated by ligand binding to its C-terminal domain to the intracellular domain that interacts with several cytoplasmic proteins.


Journal of Neurochemistry | 2004

Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP)

Rebecca A. Lew; Tomris Mustafa; Siying Ye; Sharon G. McDowall; Siew Yeen Chai; Anthony L. Albiston

Angiotensin IV (Ang IV) exerts profound effects on memory and learning, a phenomenon ascribed to its binding to a specific AT4 receptor. However the AT4 receptor has recently been identified as the insulin‐regulated aminopeptidase (IRAP). In this study, we demonstrate that AT4 receptor ligands, including Ang IV, Nle1‐Ang IV, divalinal‐Ang IV, and the structurally unrelated LVV‐hemorphin‐7, are all potent inhibitors of IRAP catalytic activity, as assessed by cleavage of leu‐β‐naphthylamide by recombinant human IRAP. Both Ang IV and divalinal–Ang IV display competitive kinetics, indicating that AT4 ligands mediate their effects by binding to the catalytic site of IRAP. The AT4 ligands also displaced [125I]‐Nle1‐Ang IV or [125I]‐divalinal1‐Ang IV from IRAP‐HEK293T membranes with high affinity, which was up to 200‐fold greater than in the catalytic assay; this difference was not consistent among the peptides, and could not be ascribed to ligand degradation. Although some AT4 ligands were subject to minor cleavage by HEK293T membranes, none were substrates for IRAP. Of a range of peptides tested, only vasopressin, oxytocin, and met‐enkephalin were rapidly cleaved by IRAP. We propose that the physiological effects of AT4 ligands result, in part, from inhibition of IRAP cleavage of neuropeptides involved in memory processing.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Different cross-presentation pathways in steady-state and inflammatory dendritic cells

Elodie Segura; Anthony L. Albiston; Ian P. Wicks; Siew Yeen Chai; Jose A. Villadangos

Presentation of exogenous antigens on MHC class I molecules, termed cross-presentation, is essential for the induction of CD8 T-cell responses and is carried out by specialized dendritic cell (DC) subsets. The mechanisms involved remain unclear. It has been proposed that antigens could be transported by endocytic receptors, such as the mannose receptor (MR) in the case of soluble ovalbumin, into early endosomes in which the cross-presentation machinery would be recruited. In these endosomal compartments, peptides would be trimmed by the aminopeptidase IRAP before loading onto MHC class I molecules. Here, we have investigated the contribution of this pathway to cross-presentation by steady-state CD8+ DC and inflammatory monocyte-derived DC (moDC) generated in vivo. We demonstrate that IRAP and MR are dispensable for cross-presentation by CD8+ DC and for cross-priming. Moreover, we could not find any evidence for diversion of endocytosed antigen into IRAP-containing endosomes in these cells. However, cross-presentation was impaired in moDC deficient in IRAP or MR, confirming the role of these two molecules in inflammatory DC. These results demonstrate that the mechanisms responsible for cross-priming by steady-state and inflammatory DC are different, which has important implications for vaccine design.


Neuroscience | 2004

Effect of I.C.V. injection of AT4 receptor ligands, NLE1-angiotensin IV and LVV-hemorphin 7, on spatial learning in rats

Joohyung Lee; Anthony L. Albiston; Andrew M. Allen; Frederick A.O. Mendelsohn; S.E Ping; Graham L. Barrett; Michael Murphy; Margaret J. Morris; Sharon G. McDowall; Syn Y Chai

Central administration of angiotensin IV (Ang IV) or its analogues enhance performance of rats in passive avoidance and spatial memory paradigms. The purpose of this study was to examine the effect of a single bolus injection of two distinct AT4 ligands, Nle1-Ang IV or LVV-haemorphin-7, on spatial learning in the Barnes circular maze. Mean number of days for rats treated with either Nle1-Ang IV or LVV-haemorphin-7 to achieve learner criterion is significantly reduced compared with controls (P < 0.001 and P < 0.05 respectively). This is due to enhanced ability of the peptide-treated rats to adopt a spatial strategy for finding the escape hatch. In all three measures of learning performance, (1) the number of errors made, (2) the distance travelled and (3) the latency in finding the escape hatch, rats treated with either 100 pmol or 1 nmol of Nle1-Ang IV or 100 pmol LVV-haemorphin-7 performed significantly better than the control groups. As early as the first day of testing, the rats treated with the lower dose of Nle1-Ang IV or LVV-haemorphin-7 made fewer errors (P < 0.01 and P < 0.05 respectively) and travelled shorter distances (P < 0.05 for both groups) than the control animals. The enhanced spatial learning induced by Nle1-Ang IV (100 pmol) was attenuated by the co-administration of the AT4 receptor antagonist, divalinal-Ang IV (10 nmol). Thus, administration of AT4 ligands results in an immediate potentiation of learning, which may be associated with facilitation of synaptic transmission and/or enhancement of acetylcholine release.


Journal of Chemical Neuroanatomy | 2000

Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography

Siew Yeen Chai; Maria A. Bastias; Eleanor F. Clune; Duana Matsacos; Tomris Mustafa; Joohyung Lee; Sharon G. McDowall; Frederick A.O. Mendelsohn; Anthony L. Albiston; Georg Paxinos

Angiotensin IV and other AT4 receptor agonists, improve memory retention and retrieval in the passive avoidance and swim maze learning paradigms. Angiotensin IV binding sites (also known as the AT4 receptors) are widely distributed in guinea pig and monkey (Macaca fascicularis) brains where high densities of the binding sites have been detected in the hippocampus, neocortex and motor nuclei. However, the distribution of the binding sites in the human brain is not known. We have recently localised the angiotensin IV binding sites (AT4 receptors) in post-mortem human brain using iodinated Nle-angiotensin IV, a higher affinity and more stable analogue of angiotensin IV. This radioligand bound with relatively high affinity and specificity to angiotensin IV binding sites. In competition studies on consecutive sections through the prefrontal cortex and claustrum, angiotensin IV, Nle-angiotensin IV and LVV-hemorphin 7 competed for the binding of 125I[Nle]-angiotensin IV with nanomolar affinities. Angiotensin II and the AT1 and AT2 receptor antagonists were ineffective in competing for the binding at concentrations of up to 10 microM. We found high densities of 125I[Nle]-angiotensin IV binding sites throughout the cerebral cortex including the insular, entorhinal, prefrontal and cingulate cortices. Very high densities of the binding sites were observed in the claustrum, choroid plexus, hippocampus and pontine nucleus. Some thalamic nuclei displayed high densities of binding including the anteroprincipal, ventroanterior, anteromedial, medial dorsal and ventrolateral nuclei. The caudate nucleus, putamen, many amygdaloid nuclei and the red nucleus all displayed moderate densities of binding with a higher level detected in the substantia nigra pars compacta. In the hypothalamus, high densities binding sites were found in the ventromedial nucleus with lower levels in the dorsomedial and paraventricular nuclei. The distribution of 125I[Nle]-angiotensin IV binding sites in the human brain is similar to that found in other species and supports multiple roles for the binding sites in the central nervous system, including facilitation of memory retention and retrieval.


The FASEB Journal | 2008

Identification and characterization of a new cognitive enhancer based on inhibition of insulin-regulated aminopeptidase

Anthony L. Albiston; Craig J. Morton; Hooi Ling Ng; Vi Pham; Holly R. Yeatman; Siying Ye; Ruani N. Fernando; Dimitri De Bundel; David B. Ascher; Frederick A.O. Mendelsohn; Michael W. Parker; Siew Yeen Chai

Approximately one‐quarter of people over the age of 65 are estimated to suffer some form of cognitive impairment, underscoring the need for effec tive cognitive‐enhancing agents. Insulin‐regulated ami nopeptidase (IRAP) is potentially an innovative tar get for the development of cognitive enhancers, as its peptide inhibitors exhibit memory‐enhancing effects in both normal and memory‐impaired rodents. Using a homology model of the catalytic domain of IRAP and virtual screening, we have identified a class of nonpeptide, small‐molecule inhibitors of IRAP. Structure‐based computational development of an initial “hit” resulted in the identification of two divergent families of compounds. Subsequent medicinal chemistry performed on the highest affinity compound produced inhibitors with nanomolar affinities (Ki 20‐700 nM) for IRAP. In vivo efficacy of one of these inhibitors was demonstrated in rats with an acute dose (1 nmol in 1 μl) administered into the lateral ventricles, improving performance in both spatial working and recognition memory paradigms. We have identified a family of specific IRAP inhibi tors that is biologically active which will be useful both in understanding the physiological role of IRAP and potentially in the development of clinically useful cogni tive enhancers. Notably, this study also provides unequiv ocal proof of principal that inhibition of IRAP results in memory enhancement.— Albiston, A. L., Morton, C. J., Ng, H. L., Pham, V., Yeatman, H. R., Ye, S., Ruani, N., Fernando, R. N., De Bundel, D., Ascher, D. B., Men delsohn, F. A. O., Parker, M. W., Chai, S. Y. Identification and characterization of a new cognitive enhancer based on inhibition of insulin‐regulated aminopeptidase. FASEB J. 22, 4209–4217 (2008)


Trends in Endocrinology and Metabolism | 2003

AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement

Anthony L. Albiston; Tomris Mustafa; Sharon G. McDowall; Frederick A.O. Mendelsohn; Joohyung Lee; Siew Yeen Chai

Although angiotensin IV (Ang IV) was thought initially to be an inactive product of Ang II degradation, it was subsequently shown that the hexapeptide markedly enhances learning and memory in normal rodents and reverses the memory deficits seen in animal models of amnesia. These central nervous system effects of Ang IV are mediated by binding to a specific site, known as the AT(4) receptor, which is found in appreciable levels throughout the brain and is concentrated particularly in regions involved in cognition. This field of research was redefined by the identification of the AT(4) receptor as the transmembrane enzyme, insulin-regulated membrane aminopeptidase (IRAP). Here, we explore the potential mechanisms by which Ang IV binding to IRAP leads to the facilitation of learning and memory.


European Journal of Neuroscience | 2008

The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - Potential role in modulation of glucose uptake in neurones?

Ruani N. Fernando; Anthony L. Albiston; Siew Yeen Chai

It is proposed that insulin‐regulated aminopeptidase (IRAP) is the site of action of two peptides, angiotensin IV and LVV‐hemorphin 7, which have facilitatory effects on learning and memory. In fat and muscles, IRAP codistributes with the insulin‐responsive glucose transporter GLUT4 in specialised vesicles, where it plays a role in the tethering and/or trafficking of these vesicles. This study investigated whether an analogous system exists in two functionally distinct regions of the brain, the hippocampus and the cerebellum. In the hippocampus, IRAP was found in the pyramidal neurones where it exhibited a high degree of colocalisation with GLUT4. Consistent with the role of GLUT4 in insulin‐responsive tissues, the glucose transporter was thought to be responsible for facilitating glucose uptake into these pyramidal neurones in response to potassium‐induced depolarisation or cAMP activation as the glucose influx was sensitive to indinavir treatment. Angiotensin IV and LVV‐hemorphin 7 enhanced this activity‐dependent glucose uptake in hippocampal slices. In contrast, in the cerebellum, where the distribution of IRAP was dissociated from GLUT4, the effect of the peptides on glucose uptake was absent. We propose that the modulation of glucose uptake by angiotensin IV and LVV‐hemorphin 7 is region‐specific and is critically dependent on a high degree of colocalisation between IRAP and GLUT4. These findings also confirm a role for IRAP and GLUT4 in activity‐dependent glucose uptake in hippocampal neurones.

Collaboration


Dive into the Anthony L. Albiston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joohyung Lee

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge