Anthony M. Shelton
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anthony M. Shelton.
Nature Biotechnology | 2008
Jörg Romeis; Detlef Bartsch; Franz Bigler; Marco P. Candolfi; Marco Gielkens; Susan E. Hartley; Richard L. Hellmich; Joseph E. Huesing; Paul C. Jepson; Raymond J. Layton; Hector Quemada; Alan Raybould; Robyn Rose; Joachim Schiemann; Mark K. Sears; Anthony M. Shelton; Jeremy Sweet; Zigfridas Vaituzis; Jeffrey D. Wolt
An international initiative is developing a scientifically rigorous approach to evaluate the potential risks to nontarget arthropods (NTAs) posed by insect-resistant, genetically modified (IRGM) crops. It adapts the tiered approach to risk assessment that is used internationally within regulatory toxicology and environmental sciences. The approach focuses on the formulation and testing of clearly stated risk hypotheses, making maximum use of available data and using formal decision guidelines to progress between testing stages (or tiers). It is intended to provide guidance to regulatory agencies that are currently developing their own NTA risk assessment guidelines for IRGM crops and to help harmonize regulatory requirements between different countries and different regions of the world.
Nature Biotechnology | 2000
Anthony M. Shelton; Juliet D. Tang; Richard T. Roush; Timothy D. Metz; Elizabeth D. Earle
Several important crops have been engineered to express toxins of Bacillus thuringiensis (Bt) for insect control. In 1999, US farmers planted nearly 8 million hectares (nearly 20 million acres) of transgenic Bt crops approved by the EPA. Bt-transgenic plants can greatly reduce the use of broader spectrum insecticides, but insect resistance may hinder this technology. Present resistance management strategies rely on a “refuge” composed of non-Bt plants to conserve susceptible alleles. We have used Bt-transgenic broccoli plants and the diamondback moth as a model system to examine resistance management strategies. The higher number of larvae on refuge plants in our field tests indicate that a “separate refuge” will be more effective at conserving susceptible larvae than a “mixed refuge” and would thereby reduce the number of homozygous resistant (RR) offspring. Our field tests also examined the strategy of spraying the refuge to prevent economic loss to the crop while maintaining susceptible alleles in the population. Results indicate that great care must be taken to ensure that refuges, particularly those sprayed with efficacious insecticides, produce adequate numbers of susceptible alleles. Each insect/Bt crop system may have unique management requirements because of the biology of the insect, but our studies validate the need for a refuge. As we learn more about how to refine our present resistance management strategies, it is important to also develop the next generation of technology and implementation strategies.
PLOS ONE | 2011
Simon W. Baxter; John W. Davey; J. Spencer Johnston; Anthony M. Shelton; David G. Heckel; Chris D. Jiggins; Mark Blaxter
Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful system capable of rapidly generating chromosome specific data for non-model organisms.
Journal of Economic Entomology | 2002
Jian-Zhou Zhao; Yaxin Li; Hilda L. Collins; L. Gusukuma-Minuto; R. F. L. Mau; G. D. Thompson; Anthony M. Shelton
Abstract Fourteen populations of the diamondback moth, Plutella xylostella (L.), were collected from fields of crucifer vegetables in the United States, Mexico, and Thailand in 1999 and 2000 for susceptibility tests with spinosad. Most populations were susceptible to spinosad and similar to earlier baseline values, but populations from Thailand and Hawaii showed high levels of tolerance. A statewide survey in Hawaii in 2000 and 2001 indicated resistance problems on several islands. One colony collected in October 2000 from Pearl City, HI, was subjected to further selection pressure, using spinosad in the laboratory, and then was used as the resistant strain (Pearl-Sel) for other tests. Spray tests using the recommended field rates of spinosad on potted broccoli plants in the greenhouse confirmed that field control failures due to resistance were possible in the areas of these collections. Analysis of probit lines from F1 reciprocal crosses between the Pearl-Sel and S strain indicated that resistance to spinosad was inherited autosomally and was incompletely recessive. A direct test of monogenic inheritance based on the F1 × Pearl-Sel backcrosses suggested that resistance to spinosad was probably controlled by one locus. The synergists S,S,S-tributyl phosphorotrithioate and piperonyl butoxide did not enhance the toxicity of spinosad to the resistant colony, indicating metabolic mediated detoxification was probably not responsible for the spinosad resistance. Two field colonies in Hawaii that were resistant to spinosad were not cross-resistant to emamectin benzoate or indoxacarb. Resistance developed in Hawaii due to the continuous cultivation of crucifers in which as many as 50 applications of spinosad per year may have been made to a common population of P. xylostella in sequential plantings, although each grower might have used the labeled restrictions for resistance management. Resistance management strategies will need to address such cropping and pest management practices.
Annual Review of Entomology | 2011
Mao Chen; Anthony M. Shelton; Gong-Yin Ye
From the first insect-resistant genetically modified (IRGM) rice transformation in 1989 in China to October 2009 when the Chinese Ministry of Agriculture issued biosafety certificates for commercial production of two cry1Ab/Ac Bacillus thuringiensis (Bt) lines, China made a great leap forward from IRGM rice basic research to potential commercialization of the worlds first IRGM rice. Research has been conducted on developing IRGM rice, assessing its environmental and food safety impacts, and evaluating its socioeconomic consequences. Laboratory and field tests have confirmed that these two Bt rice lines can provide effective and economic control of the lepidopteran complex on rice with less risk to the environment than present practices. Commercializing these Bt plants, while developing other GM plants that address the broader complex of insects and other pests, will need to be done within a comprehensive integrated pest management program to ensure the food security of China and the world.
Journal of Economic Entomology | 2006
Jian-Zhou Zhao; Hilda L. Collins; Yaxin Li; R. F. L. Mau; G. D. Thompson; M. Hertlein; J. T. Andaloro; R. Boykin; Anthony M. Shelton
Abstract Six to nine populations of the diamondback moth, Plutella xylostella (L.), were collected annually from fields of crucifer vegetables in the United States and Mexico from 2001 to 2004 for baseline susceptibility tests and resistance monitoring to spinosad, indoxacarb, and emamectin benzoate. A discriminating concentration for resistance monitoring to indoxacarb and emamectin benzoate was determined based on baseline data in 2001 and was used in the diagnostic assay for each population in 2002–2004 together with a discriminating concentration for spinosad determined previously. Most populations were susceptible to all three insecticides, but a population from Hawaii in 2003 showed high levels of resistance to indoxacarb. Instances of resistance to spinosad occurred in Hawaii (2000), Georgia (2001), and California (2002) as a consequence of a few years of extensive applications in each region. The collaborative monitoring program between university and industry scientists we discuss in this article has provided useful information to both parties as well as growers who use the products. These studies provide a baseline for developing a more effective resistance management program for diamondback moth.
Transgenic Research | 2011
Jörg Romeis; Richard L. Hellmich; Marco P. Candolfi; Keri Carstens; Adinda De Schrijver; Angharad M. R. Gatehouse; Rod A. Herman; Joseph E. Huesing; Morven A. McLean; Alan Raybould; Anthony M. Shelton; Annabel Waggoner
This paper provides recommendations on experimental design for early-tier laboratory studies used in risk assessments to evaluate potential adverse impacts of arthropod-resistant genetically engineered (GE) plants on non-target arthropods (NTAs). While we rely heavily on the currently used proteins from Bacillus thuringiensis (Bt) in this discussion, the concepts apply to other arthropod-active proteins. A risk may exist if the newly acquired trait of the GE plant has adverse effects on NTAs when they are exposed to the arthropod-active protein. Typically, the risk assessment follows a tiered approach that starts with laboratory studies under worst-case exposure conditions; such studies have a high ability to detect adverse effects on non-target species. Clear guidance on how such data are produced in laboratory studies assists the product developers and risk assessors. The studies should be reproducible and test clearly defined risk hypotheses. These properties contribute to the robustness of, and confidence in, environmental risk assessments for GE plants. Data from NTA studies, collected during the analysis phase of an environmental risk assessment, are critical to the outcome of the assessment and ultimately the decision taken by regulatory authorities on the release of a GE plant. Confidence in the results of early-tier laboratory studies is a precondition for the acceptance of data across regulatory jurisdictions and should encourage agencies to share useful information and thus avoid redundant testing.
Journal of Economic Entomology | 2003
Fred R. Musser; Anthony M. Shelton
Abstract Sweet corn, Zea mays L., is attacked by a variety of insect pests that can cause severe losses to the producer. Current control practices are largely limited to the application of broad-spectrum insecticides that can have a substantial and deleterious impact on the natural enemy complex. Predators have been shown to provide partial control of sweet corn pests when not killed by broad-spectrum insecticides. New products that specifically target the pest species, while being relatively benign to other insects, could provide more integrated control. In field trials we found that transgenic Bt sweet corn, and the foliar insecticides indoxacarb and spinosad are all less toxic to the most abundant predators in sweet corn (Coleomegilla maculata [DeGeer], Harmonia axyridis [Pallas], and Orius insidiosus [Say]) than the pyrethroid lambda cyhalothrin. Indoxacarb, however, was moderately toxic to coccinellids and spinosad and indoxacarb were somewhat toxic to O. insidiosus nymphs at field rates. Bt sweet corn and spinosad were able to provide control of the lepidopteran pests better than or equal to lambda cyhalothrin. The choice of insecticide material made a significant impact on survival of the pests and predators, while the frequency of application mainly affected the pests and the rate applied had little effect on either pests or predators. These results demonstrate that some of the new products available in sweet corn allow a truly integrated biological and chemical pest control program in sweet corn, making future advances in conservation, augmentation and classical biological control more feasible.
Journal of Entomological Science | 1991
Anthony M. Shelton; R. J. Cooley; M. K. Kroening; W. T. Wilsey; Sanford D. Eigenbrode
Rape seedlings, Brassica napus L., and a wheat germ-based artificial diet were compared as media for rearing diamondback moth (DBM), Plutella xylostella (L.), for six generations. Mean pupal weight and total number of eggs laid per female were always greater when larvae were reared on artificial diet; however, percentage of eggs hatching was usually greater and development time usually shorter when larvae were reared on rape seedlings. High larval survivorship (>70%) could be obtained on either media. Larvae which were reared on artificial diet were consistently more susceptible to the insecticides methomyl and permethrin, indicating potential problems in using artificial diet for insecticide studies. When larvae were reared on either medium for six generations and then transferred to cabbage, larval survivorship was nearly equal, indicating that either method could be used for artificially incoculating plants for host plant resistance studies. Although it was easier and cheaper to rear DBM on artificial ...
Applied and Environmental Microbiology | 2000
Jian-Zhou Zhao; Hilda L. Collins; Juliet D. Tang; Jun Cao; Elizabeth D. Earle; Richard T. Roush; Salvador Herrero; Baltasar Escriche; Juan Ferré; Anthony M. Shelton
ABSTRACT A field-collected colony of the diamondback moth, Plutella xylostella, had 31-fold resistance to Cry1C protoxin ofBacillus thuringiensis. After 24 generations of selection with Cry1C protoxin and transgenic broccoli expressing a Cry1C protein, the resistance that developed was high enough that neonates of the resistant strain could complete their entire life cycle on transgenic broccoli expressing high levels of Cry1C. After 26 generations of selection, the resistance ratios of this strain to Cry1C protoxin were 12,400- and 63,100-fold, respectively, for the neonates and second instars by a leaf dip assay. The resistance remained stable until generation 38 (G38) under continuous selection but decreased to 235-fold at G38 when selection ceased at G28. The Cry1C resistance in this strain was seen to be inherited as an autosomal and incompletely recessive factor or factors when evaluated using a leaf dip assay and recessive when evaluated using Cry1C transgenic broccoli. Saturable binding of 125I-Cry1C was found with brush border membrane vesicles (BBMV) from both susceptible and Cry1C-resistant strains. Significant differences in Cry1C binding to BBMV from the two strains were detected. BBMV from the resistant strain had about sevenfold-lower affinity for Cry1C and threefold-higher binding site concentration than BBMV from the susceptible strain. The overall Cry1C binding affinity was just 2.5-fold higher for BBMV from the susceptible strain than it was for BBMV from the resistant strain. These results suggest that reduced binding is not the major mechanism of resistance to Cry1C.
Collaboration
Dive into the Anthony M. Shelton's collaboration.
International Crops Research Institute for the Semi-Arid Tropics
View shared research outputs