Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony N. Imbalzano is active.

Publication


Featured researches published by Anthony N. Imbalzano.


Cell | 1996

RNA Polymerase II Holoenzyme Contains SWI/SNF Regulators Involved in Chromatin Remodeling

Christopher J. Wilson; David M. Chao; Anthony N. Imbalzano; Gavin R. Schnitzler; Robert E. Kingston; Richard A. Young

The RNA polymerase II holoenzyme contains RNA polymerase II, a subset of general transcription factors and SRB regulatory proteins. We report here that SWI and SNF gene products, previously identified as global gene regulators whose functions include remodeling chromatin, are also integral components of the yeast RNA polymerase II holoenzyme. The SWI/SNF proteins are components of the SRB complex, also known as the mediator, which is tightly associated with the RNA polymerase II C-terminal repeat domain. The SWI/SNF components provide the holoenzyme with the capacity to disrupt nucleosomal DNA and thus facilitate stable binding of various components of the transcription initiation complex at promoters.


Nature Genetics | 2004

p38 pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci

Cristiano Simone; Sonia Vanina Forcales; David A. Hill; Anthony N. Imbalzano; Lucia Latella; Pier Lorenzo Puri

During skeletal myogenesis, genomic reprogramming toward terminal differentiation is achieved by recruiting chromatin-modifying enzymes to muscle-specific loci. The relative contribution of extracellular signaling cascades in targeting these enzymes to individual genes is unknown. Here we show that the differentiation-activated p38 pathway targets the SWI-SNF chromatin-remodeling complex to myogenic loci. Upon differentiation, p38 kinases were recruited to the chromatin of muscle-regulatory elements. Blockade of p38α/β repressed the transcription of muscle genes by preventing recruitment of the SWI-SNF complex at these elements without affecting chromatin binding of muscle-regulatory factors and acetyltransferases. The SWI-SNF subunit BAF60 could be phosphorylated by p38α-β in vitro, and forced activation of p38α/β in myoblasts by expression of a constitutively active MKK6 (refs. 5,6,7) promoted unscheduled SWI-SNF recruitment to the myogenin promoter. Conversely, inactivation of SWI-SNF enzymatic subunits abrogated MKK6-dependent induction of muscle gene expression. These results identify an unexpected function of differentiation-activated p38 in converting external cues into chromatin modifications at discrete loci, by selectively targeting SWI-SNF to muscle-regulatory elements.


Nature Reviews Genetics | 2006

Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers

Ivana L. de la Serna; Yasuyuki Ohkawa; Anthony N. Imbalzano

The initiation of cellular differentiation involves alterations in gene expression that depend on chromatin changes, at the level of both higher-order structures and individual genes. Consistent with this, chromatin-remodelling enzymes have key roles in differentiation and development. The functions of ATP-dependent chromatin-remodelling enzymes have been studied in several mammalian differentiation pathways, revealing cell-type-specific and gene-specific roles for these proteins that add another layer of precision to the regulation of differentiation. Recent studies have also revealed a role for ATP-dependent remodelling in regulating the balance between proliferation and differentiation, and have uncovered intriguing links between chromatin remodelling and other cellular processes during differentiation, including recombination, genome organization and the cell cycle.


Nature Genetics | 2001

Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation

Ivana L. de la Serna; Kerri A. Carlson; Anthony N. Imbalzano

Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling enzymes that have been implicated in the regulation of gene expression, cell-cycle control and oncogenesis. MyoD is a muscle-specific regulator able to induce myogenesis in numerous cell types. To ascertain the requirement for chromatin remodeling enzymes in cellular differentiation processes, we examined MyoD-mediated induction of muscle differentiation in fibroblasts expressing dominant-negative versions of the human brahma-related gene-1 (BRG1) or human brahma (BRM), the ATPase subunits of two distinct SWI/SNF enzymes. We find that induction of the myogenic phenotype is completely abrogated in the presence of the mutant enzymes. We further demonstrate that failure to induce muscle-specific gene expression correlates with inhibition of chromatin remodeling in the promoter region of an endogenous muscle-specific gene. Our results demonstrate that SWI/SNF enzymes promote MyoD-mediated muscle differentiation and indicate that these enzymes function by altering chromatin structure in promoter regions of endogenous, differentiation-specific loci.


Molecular and Cellular Biology | 2001

Disruption of Ini1 Leads to Peri-Implantation Lethality and Tumorigenesis in Mice

Cynthia J. Guidi; Arthur T. Sands; Brian Zambrowicz; Tod K. Turner; Delia A. Demers; William Webster; Thomas W. Smith; Anthony N. Imbalzano; Stephen N. Jones

ABSTRACT SNF5/INI1 is a component of the ATP-dependent chromatin remodeling enzyme family SWI/SNF. Germ line mutations ofINI1 have been identified in children with brain and renal rhabdoid tumors, indicating that INI1 is a tumor suppressor. Here we report that disruption of Ini1 expression in mice results in early embryonic lethality. Ini1-null embryos die between 3.5 and 5.5 days postcoitum, and Ini1-null blastocysts fail to hatch, form the trophectoderm, or expand the inner cell mass when cultured in vitro. Furthermore, we report that approximately 15% ofIni1-heterozygous mice present with tumors, mostly undifferentiated or poorly differentiated sarcomas. Tumor formation is associated with a loss of heterozygocity at the Ini1 locus, characterizing Ini1 as a tumor suppressor in mice. Thus, Ini1 is essential for embryo viability and for repression of oncogenesis in the adult organism.


Molecular and Cellular Biology | 2005

MyoD Targets Chromatin Remodeling Complexes to the Myogenin Locus Prior to Forming a Stable DNA-Bound Complex

Ivana L. de la Serna; Yasuyuki Ohkawa; Charlotte A. Berkes; Donald A. Bergstrom; Caroline S. Dacwag; Stephen J. Tapscott; Anthony N. Imbalzano

ABSTRACT The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing evidence for SWI/SNF-dependent activator binding. We observed that the homeodomain factor Pbx1, which cooperates with MyoD to stimulate myogenin expression, is constitutively bound to the myogenin promoter in a SWI/SNF-independent manner, suggesting a two-step mechanism in which MyoD initially interacts indirectly with the myogenin promoter and attracts chromatin-remodeling enzymes, which then facilitate direct binding by MyoD and other regulatory proteins.


The EMBO Journal | 2006

Mammalian SWI/SNF complexes facilitate DNA double‐strand break repair by promoting γ‐H2AX induction

Ji-Hye Park; Eun-Jung Park; Han-Sae Lee; So Jung Kim; Shin-Kyoung Hur; Anthony N. Imbalzano; Jongbum Kwon

Although mammalian SWI/SNF chromatin remodeling complexes have been well established to play important role in transcription, their role in DNA repair has remained largely unexplored. Here we show that inactivation of the SWI/SNF complexes and downregulation of the catalytic core subunits of the complexes both result in inefficient DNA double‐strand break (DSB) repair and increased DNA damage sensitivity as well as a large defect in H2AX phosphorylation (γ‐H2AX) and nuclear focus formation after DNA damage. The expression of most DSB repair genes remains unaffected and DNA damage checkpoints are grossly intact in the cells inactivated for the SWI/SNF complexes. Although the SWI/SNF complexes do not affect the expression of ATM, DNA‐PK and ATR, or their activation and/or recruitment to DSBs, they rapidly bind to DSB‐surrounding chromatin via interaction with γ‐H2AX in the manner that is dependent on the amount of DNA damage. Given the crucial role for γ‐H2AX in efficient DSB repair, these results suggest that the SWI/SNF complexes facilitate DSB repair, at least in part, by promoting H2AX phosphorylation by directly acting on chromatin.


Nature | 2007

Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2

Daniel W. Young; Mohammad Q. Hassan; Jitesh Pratap; Mario Galindo; Sayyed K. Zaidi; Suk Hee Lee; Xiaoqing Yang; Ronglin Xie; Amjad Javed; Jean M. Underwood; Paul S. Furcinitti; Anthony N. Imbalzano; Sheldon Penman; Jeffrey A. Nickerson; Martin A. Montecino; Jane B. Lian; Janet L. Stein; Andre J. Van Wijnen; Gary S. Stein

Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors Runx1, Runx2 and Runx3 establish and maintain cell identity, and convey phenotypic information through successive cell divisions for regulatory events that determine cell cycle progression or exit in progeny cells. Here we establish that mammalian Runx2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II, but also acts as a repressor of RNA Pol I mediated rRNA synthesis. Within the condensed mitotic chromosomes we find that Runx2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These Runx2 chromosomal foci are associated with open chromatin, co-localize with the RNA Pol I transcription factor UBF1, and undergo transition into nucleoli at sites of rRNA synthesis during interphase. Ribosomal RNA transcription and protein synthesis are enhanced by Runx2 deficiency that results from gene ablation or RNA interference, whereas induction of Runx2 specifically and directly represses rDNA promoter activity. Runx2 forms complexes containing the RNA Pol I transcription factors UBF1 and SL1, co-occupies the rRNA gene promoter with these factors in vivo, and affects local chromatin histone modifications at rDNA regulatory regions. Thus Runx2 is a critical mechanistic link between cell fate, proliferation and growth control. Our results suggest that lineage-specific control of ribosomal biogenesis may be a fundamental function of transcription factors that govern cell fate.


Molecular and Cellular Biology | 2004

Temporal Recruitment of Transcription Factors and SWI/SNF Chromatin-Remodeling Enzymes during Adipogenic Induction of the Peroxisome Proliferator-Activated Receptor γ Nuclear Hormone Receptor

Nunciada Salma; Hengyi Xiao; Elisabetta Mueller; Anthony N. Imbalzano

ABSTRACT The peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipogenesis, lipid metabolism, and glucose homeostasis, and roles have emerged for this receptor in the pathogenesis and treatment of diabetes, atherosclerosis, and cancer. We report here that induction of the PPARγ activator and adipogenesis forced by overexpression of adipogenic regulatory proteins is blocked upon expression of dominant-negative BRG1 or hBRM, the ATPase subunits of distinct SWI/SNF chromatin-remodeling enzymes. We demonstrate that histone hyperacetylation and the binding of C/EBP activators, polymerase II (Pol II), and general transcription factors (GTFs) initially occurred at the inducible PPARγ2 promoter in the absence of SWI/SNF function. However, the polymerase and GTFs were subsequently lost from the promoter in cells expressing dominant-negative SWI/SNF, explaining the inhibition of PPARγ2 expression. To corroborate these data, we analyzed interactions at the PPARγ2 promoter in differentiating preadipocytes. Changes in promoter structure, histone hyperacetylation, and binding of C/EBP activators, Pol II, and most GTFs preceded the interaction of SWI/SNF enzymes with the PPARγ2 promoter. However, transcription of the PPARγ2 gene occurred only upon subsequent association of SWI/SNF and TFIIH with the promoter. Thus, induction of the PPARγ nuclear hormone receptor during adipogenesis requires SWI/SNF enzymes to facilitate preinitiation complex function.


Molecular Cell | 1998

Accessibility of Nucleosomal DNA to V(D)J Cleavage Is Modulated by RSS Positioning and HMG1

Jongbum Kwon; Anthony N. Imbalzano; Adam G. W. Matthews; Marjorie A. Oettinger

B and T cell receptor gene assembly by V(D)J recombination is tightly regulated during lymphoid development. The mechanisms involved in this regulation are poorly understood. Here we show that nucleosomal DNA is refractory to V(D)J cleavage. However, the presence of HMG1, a chromatin-associated nonhistone DNA-binding protein, stimulates V(D)J cleavage of nucleosomal templates. This HMG1 stimulation is differentially affected by the rotational or translational positioning of the recombination signal sequence on the histone octamer, with cleavage of the 12 bp spacer RSS showing sensitivity to rotational position and the 23 bp spacer RSS affected by its displacement from the dyad. These results suggest that V(D)J recombination can be modulated by controlling substrate accessibility and cleavage at the level of an individual nucleosome.

Collaboration


Dive into the Anthony N. Imbalzano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Nickerson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre J. Van Wijnen

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Stephen N. Jones

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saïd Sif

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

A. Rasim Barutcu

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge