Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anthony P. Monaco is active.

Publication


Featured researches published by Anthony P. Monaco.


Cell | 1987

Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals

M. Koenig; Eric P. Hoffman; Corlee J. Bertelson; Anthony P. Monaco; Chris A. Feener; Louis M. Kunkel

The 14 kb human Duchenne muscular dystrophy (DMD) cDNA corresponding to a complete representation of the fetal skeletal muscle transcript has been cloned. The DMD transcript is formed by at least 60 exons which have been mapped relative to various reference points within Xp21. The first half of the DMD transcript is formed by a minimum of 33 exons spanning nearly 1000 kb, and the remaining portion has at least 27 exons that may spread over a similar distance. The DNA isolated from 104 DMD boys was tested with the cDNA for detection of deletions and 53 patients exhibit deletion mutations. The majority of deletions are concentrated in a single genomic segment corresponding to only 2 kb of the transcript.


Nature | 2001

A forkhead-domain gene is mutated in a severe speech and language disorder.

Cecilia S. L. Lai; Simon E. Fisher; Jane A. Hurst; Faraneh Vargha-Khadem; Anthony P. Monaco

Individuals affected with developmental disorders of speech and language have substantial difficulty acquiring expressive and/or receptive language in the absence of any profound sensory or neurological impairment and despite adequate intelligence and opportunity. Although studies of twins consistently indicate that a significant genetic component is involved, most families segregating speech and language deficits show complex patterns of inheritance, and a gene that predisposes individuals to such disorders has not been identified. We have studied a unique three-generation pedigree, KE, in which a severe speech and language disorder is transmitted as an autosomal-dominant monogenic trait. Our previous work mapped the locus responsible, SPCH1, to a 5.6-cM interval of region 7q31 on chromosome 7 (ref. 5). We also identified an unrelated individual, CS, in whom speech and language impairment is associated with a chromosomal translocation involving the SPCH1 interval. Here we show that the gene FOXP2, which encodes a putative transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain, is directly disrupted by the translocation breakpoint in CS. In addition, we identify a point mutation in affected members of the KE family that alters an invariant amino-acid residue in the forkhead domain. Our findings suggest that FOXP2 is involved in the developmental process that culminates in speech and language.


Cell | 1988

The Complete Sequence of Dystrophin Predicts a Rod-Shaped Cytoskeletal Protein

Michel Koenig; Anthony P. Monaco; Louis M. Kunkel

The complete sequence of the human Duchenne muscular dystrophy (DMD) cDNA has been determined. The 3685 encoded amino acids of the protein product, dystrophin, can be separated into four domains. The 240 amino acid N-terminal domain has been shown to be conserved with the actin-binding domain of alpha-actinin. A large second domain is predicted to be rod-shaped and formed by the succession of 25 triple-helical segments similar to the repeat domains of spectrin. The repeat segment is followed by a cysteine-rich segment that is similar in part to the entire COOH domain of the Dictyostelium alpha-actinin, while the 420 amino acid C-terminal domain of dystrophin does not show any similarity to previously reported proteins. The functional significance of some of the domains is addressed relative to the phenotypic characteristics of some Becker muscular dystrophy patients. Dystrophin shares many features with the cytoskeletal protein spectrin and alpha-actinin and is a large structural protein that is likely to adopt a rod shape about 150 nm in length.


Nature | 2002

Molecular evolution of FOXP2, a gene involved in speech and language.

Wolfgang Enard; Molly Przeworski; Simon E. Fisher; Cecilia S. L. Lai; Victor Wiebe; Takashi Kitano; Anthony P. Monaco; Svante Pääbo

Language is a uniquely human trait likely to have been a prerequisite for the development of human culture. The ability to develop articulate speech relies on capabilities, such as fine control of the larynx and mouth, that are absent in chimpanzees and other great apes. FOXP2 is the first gene relevant to the human ability to develop language. A point mutation in FOXP2 co-segregates with a disorder in a family in which half of the members have severe articulation difficulties accompanied by linguistic and grammatical impairment. This gene is disrupted by translocation in an unrelated individual who has a similar disorder. Thus, two functional copies of FOXP2 seem to be required for acquisition of normal spoken language. We sequenced the complementary DNAs that encode the FOXP2 protein in the chimpanzee, gorilla, orang-utan, rhesus macaque and mouse, and compared them with the human cDNA. We also investigated intraspecific variation of the human FOXP2 gene. Here we show that human FOXP2 contains changes in amino-acid coding and a pattern of nucleotide polymorphism, which strongly suggest that this gene has been the target of selection during recent human evolution.


Nature Genetics | 1999

Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease

Anavaj Sakuntabhai; Victor L. Ruiz-Perez; Simon A. Carter; N. Jacobsen; Susan Burge; Sarah Monk; M. Smith; Colin S. Munro; Michael Conlon O'Donovan; Nicholas John Craddock; Raju Kucherlapati; Jonathan L. Rees; Michael John Owen; G. M. Lathrop; Anthony P. Monaco; Tom Strachan; Alain Hovnanian

Darier disease (DD) is an autosomal-dominant skin disorder characterized by loss of adhesion between epidermal cells (acantholysis) and abnormal keratinization. Recently we constructed a 2.4-Mb, P1-derived artificial chromosome contig spanning the DD candidate region on chromosome 12q23-24.1. After screening several genes that mapped to this region, we identified mutations in the ATP2A2 gene, which encodes the sarco/endoplasmic reticulum Ca2+ -ATPase type 2 isoform (SERCA2) and is highly expressed in keratinocytes. Thirteen mutations were identified, including frameshift deletions, in-frame deletions or insertions, splice-site mutations and non-conservative missense mutations in functional domains. Our results demonstrate that mutations in ATP2A2 cause DD and disclose a role for this pump in a Ca2+-signalling pathway regulating cell-to-cell adhesion and differentiation of the epidermis.


The New England Journal of Medicine | 2008

A functional genetic link between distinct developmental language disorders.

Sonja C. Vernes; Dianne F. Newbury; Brett S. Abrahams; Laura Winchester; Jérôme Nicod; Matthias Groszer; Maricela Alarcón; Peter L. Oliver; Kay E. Davies; Daniel H. Geschwind; Anthony P. Monaco; Simon E. Fisher

BACKGROUND Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P=5.0x10(-5) at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language.


American Journal of Human Genetics | 2001

A genomewide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p

Sarah Palferman; Nicola Matthews; Martha Turner; Janette Moore; Amaia Hervas; Anne Aubin; Simon Wallace; Janine Michelotti; Catherine Wainhouse; Alina Paul; Elaine Thompson; Ramyani Gupta; Claire Garner; Marianne Murin; Christine M. Freitag; N Ryder; E Cottington; Jeremy R. Parr; Andrew Pickles; Michael Rutter; Anthony J. Bailey; Gabrielle Barnby; J A Lamb; Angela J. Marlow; Pat Scudder; Anthony P. Monaco; Gillian Baird; Antony Cox; Zoe Docherty; Pamela Warburton

Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes.


Nature Genetics | 2000

Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2.

Alessandra Bolino; Maria Muglia; Francesca Luisa Conforti; Eric LeGuern; Mustafa A. Salih; Domna Maria Georgiou; Kyproula Christodoulou; Irena Hausmanowa-Petrusewicz; Paola Mandich; Angelo Schenone; Antonio Gambardella; F. Bono; Aldo Quattrone; Marcella Devoto; Anthony P. Monaco

A gene mutated in Charcot-Marie-Tooth disease type 4B (CMT4B), an autosomal recessive demyelinating neuropathy with myelin outfoldings, has been mapped on chromosome 11q22. Using a positional-cloning strategy, we identified in unrelated CMT4B patients mutations occurring in the gene MTMR2, encoding myotubularin-related protein-2, a dual specificity phosphatase (DSP).


Psychopharmacology | 1983

Self-injection of amphetamine directly into the brain

Bartley G. Hoebel; Anthony P. Monaco; Luis Hernandez; Edward F. Aulisi; B. Glenn Stanley; László Lénárd

Rats learned to self-administer d-amphetamine (10 μg/μl) through a cannula implanted in the nucleus accumbens. They responded more frequently for 65±15 nl of amphetamine than for equal amounts of saline. When presented with two levers (one amphetamine, one blank) they responded more on the correct lever for amphetamine. They would also switch levers, when necessary, to maintain access to the drug. When half the usual drug intake was given automatically, animals reduced their response rate by half, thus self-regulating the total amount of amphetamine they received. In tests for leakage into the ventricles, eight rats that self-injected with an accumbens cannula showed response extinction when switched to a ventricular cannula. We conclude that amphetamine self-injected into the accumbens is a positive reinforcer. This localization of ‘amphetamine reward’ suggests that the nucleus accumbens contains a synaptic mechanism underlying amphetamine abuse and, perhaps, also natural reinforcement of behavior.


Science | 1995

Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4

Y.J.M. de Kok; S.M. van der Maarel; M. Bitner-Glindzicz; I. Huber; Anthony P. Monaco; Susan Malcolm; Marcus Pembrey; Hh Ropers; F.P.M. Cremers

Deafness with fixation of the stapes (DFN3) is the most frequent X-linked form of hearing impairment. The underlying gene has been localized to a 500-kilobase segment of the Xq21 band. Here, it is reported that a candidate gene for this disorder, Brain 4 (POU3F4), which encodes a transcription factor with a POU domain, maps to the same interval. In five unrelated patients with DFN3 but not in 50 normal controls, small mutations were found that result in truncation of the predicted protein or in nonconservative amino acid substitutions. These findings indicate that POU3F4 mutations are a molecular cause of DFN3.

Collaboration


Dive into the Anthony P. Monaco's collaboration.

Top Co-Authors

Avatar

Takashi Maki

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rita Gottschalk

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dianne F. Newbury

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Louis M. Kunkel

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

J. J. Gozzo

Northeastern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge